
Reference manual
version 1.0.1

Contents

1 Introduction 6

1.1 Domain Name System . 8

1.1.1 Zones . 8

1.1.2 Authoritative name servers . 9

2 Resource Requirements 10

2.1 Hardware . 10

2.2 CPU . 10

2.3 Memory . 10

2.4 Supported Operating Systems . 10

3 Installation 11

3.1 Server installation . 12

4 Server configuration 15

4.1 An authoritative name server . 16

4.1.1 Primary Name Server . 16

4.1.2 Slave name server . 16

4.2 Signals . 17

0 0 2

5 Server Technical 18

5.1 Zone file reader . 18

5.1.1 Known types . 19

6 Domain Name System Security Extensions (DNSSEC) 20

6.1 Introduction . 20

6.2 DNSSEC Overview . 20

6.3 Types of key pairs . 22

6.4 Algorithms . 22

7 Configuration reference 23

7.0.1 The layout . 23

7.1 The types . 25

7.2 The sections . 25

8 Zones 40

8.1 MACROS . 40

8.1.1 $TTL . 41

8.1.2 $ORIGIN . 41

8.2 Classes . 41

8.3 Resource records types . 41

Bibliography 43

List of Figures

1.1 DNS hierarchy . 8

0 0 4

List of Tables

7.1 Types . 25

7.2 Parameters main section . 27

7.3 Parameters zone sections . 31

7.4 Parameters key sections . 32

7.5 Parameters syslog . 35

7.6 Parameters for channels . 36

7.7 logger sources . 38

7.8 logger levels . 38

0 0 5

1 Introduction

YADIFA is a name server implementation developed by EURid vzw/absl, the registry for the
.eu top-level domain. EURid vzw/absl developed YADIFA to increase the robustness of the .eu
name server infrastructure by adding a stable alternative to the other name server implementations
in use.

In a nutshell, YADIFA:

is an authoritative name server, in both a master and slave configuration

is RFCcompliant

is portable across multiple operating systems including GNU/Linux, BSD and OSX

is written from scratch in C. It is a clean implementation, which uses the openssl library.

supports EDNS0[9]

supports DNSSEC with NSEC[1] and NSEC3[2]

has full and incremental zone transfer handling (AXFR[3] and IXFR[6]).

The secondary design goals for YADIFA are:

being a caching name server

being a validating name server

having a backend which is Structured Query Language (SQL)-based1

dynamic zone updates

dynamic provisioning of zones without restart.

In future releases new features will be added:
1YADIFA will read zone from files and SQL-based backends

0 0 6

http://www.eurid.eu
http://www.eurid.eu
http://www.ietf.org/rfc.html

recursive

caching

validating

split horizon

plug-in system to integrate with EURid vzw/absl’s proprietary systems

dynamic provisioning of new domain names

DNSSEC signing service

. . .

0 0 7

http://www.eurid.eu

1.1 Domain Name System

The Domain Name System (DNS) is a system and network protocol used on the Internet. DNS is
a globally distributed database with domain names, which can translate those domain names into
IP addresses and vice versa. All Internet connected systems (routers, switches, desktops, laptops,
servers, etc.) use DNS to query DNS servers for a IP addresses.

DNS is used by most services on the Internet. Mail, which itself uses the SMTP-protocol, uses
DNS to get information about where to send emails.

DNS is an hierarchical, distributed system (see figure 1.1), one DNS server cannot hold all the
information.

www
ftp
mail

... eurid ...

...eu com gov info

root

Figure 1.1: DNS hierarchy

If you want to surf to http://www.eurid.eu, your computer needs the IP address of www.eurid.eu.
Via the root server which guide you to the eu servers, which in turn guides you to the eurid name
servers, you will get the IP address of www.eurid.eu.

1.1.1 Zones

The information about a domain name can be found in zones. In these zones you will not only
find a website’s IP address eg. www.eurid.eu or a mail server’s IP address, but also the information
that points you to a subsection of the zone.

0 0 8

To clarify:
To find the IP address of www.eurid.eu, you start your search at the root server. You are not
given the website’s IP address, but are pointed in a direction where you will be able to find the
information. The root server points you to a subsection of its zone, it points you to the name
server(s) of .eu. This we call a delegation. The zone information has a NS resource record which
contains the names of the .eu name servers. In the .eu zone information you will still not find the
IP address of the www.eurid.eu website, but you will find the delegation to the next domain name
eurid.eu. In the name servers of eurid.eu you will find in the zone information, the IP address of
www.eurid.eu.

1.1.2 Authoritative name servers

Name servers with all the information for a particular zone are the authoritative name servers for
that zone. When querying the information of a domain name with an authoritative name server,
the name server will give not only the answer, but will also indicate that it is authoritative for
the information it has provided, by sending an Authoritative Answer flag with the result.

For redundacy purposes a zone does not have only one authoritative name server. Good practice
is to have a second and/or third name server in a different sub network.

Primary name server

Only one name server has the original zone information. Most name servers have this kind of
information in a text file, also known as a zone file. Which authoritative name server is the
primary name servers of a domain name can be found in the start of authority (SOA) resource
record. This information can be obtained from any of the domain name’s authoritative name
servers.

Sometimes a primary name server is called master name server.

Secondary name server

The secondary name server has the same information as the primary name server, but differs
in that it does not have the original zone file. A secondary name server receives its initial
information from a transfer of the primary name server. There are several techniques for getting
this information.

Sometimes a secondary name server is called slave name server.

0 0 9

2 Resource Requirements

2.1 Hardware

2.2 CPU

The CPU must be able to handle 64-bit integers (natively or through the compiler). It has to run
a memory model where the data pointer size must be equal to the code pointer size. Threading is
also required.

2.3 Memory

One record takes about 135 bytes of memory. Enabling DNSSEC is much more expensive and
triples that value. At runtime, zone management and processing may require additional storage
space, up to 150% of the zone file size.

2.4 Supported Operating Systems

YADIFA has been compiled for x86 32, x86 64 on GNU/Linux (UBUNTU, Red Hat), FreeBSD
and OSX. Other Unix flavours and Windows support are planned.

0 1 0

3 Installation

The version of YADIFA is: 1.0.1

YADIFA is a collection of one daemon, yadifad ; four libraries; two man pages, yadifad.1 and
yadifad-conf.5 ; and example configuration files.

The libraries are:

dnscore

dnsdb

dnszone

dnslg.

Everything can be installed in a GNU fashion with configure, make and make install.

YADIFA is tested with:

GCC 4.6

CLANG 3.1-2

ICC 12.1.3.

If you want to compile YADIFA for a certain compiler you need to add the “CC” environmental
variable:

./configure CC=gcc-4.6

or

0 1 1

./configure CC=clang

or

./configure CC=icc

3.1 Server installation

YADIFA has several components:

A daemon yadifad

A man page yadifad.1

A man page yadifad-conf.5

A yadifad.conf.example file.

If we install yadifad in /opt/ we set the install prefix to /opt/

install_prefix=’/opt/’

tar zxvf yadifa-0.1.0-xxxx.tar.gz

cd yadifa-0.1.0-xxxx

./configure --prefix=${install_prefix}/yadifa/

make

sudo make install

After the installation a tree structure with files will have been created:

${install_prefix}/bin/

${install_prefix}/etc/

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

0 1 2

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

${install_prefix}/lib/

${install_prefix}/sbin/

${install_prefix}/share/man/man1/

${install_prefix}/share/man/man5/

${install_prefix}/var/log/

${install_prefix}/var/run/

${install_prefix}/var/zones/keys/

${install_prefix}/var/zones/masters/

${install_prefix}/var/zones/slaves/

${install_prefix}/var/zones/xfr/

The most important files are:

${install_prefix}/etc/yadifad.conf

${install_prefix}/sbin/yadifad

${install_prefix}/share/man/man1/yadifad.1

${install_prefix}/share/man/man5/yadifad-conf.5

Depending on the manner of compilation you will find the libraries in:

${install_prefix}/lib/

0 1 3

and the include files in:

${install_prefix}/include/dnscore/

${install_prefix}/include/dnsdb/

${install_prefix}/include/dnslg/

${install_prefix}/include/dnszone/

0 1 4

4 Server configuration

YADIFA is an authoritative name server only. Currently it does not have the functionalities to
be a caching name server, a validating name server or a forwarder.

YADIFA can start up without prior configuration, it just needs an empty configuration file. Of
course with an empty configuration file it does not do much, but you can test some functionalities.
It will answer queries, but with no zones configured it will return a flag which indicates that the
query is refused (REFUSED). This flag will be explained later in the manual.

All logs will be will be sent to the standard output.

The YADIFA configuration file has six sections:

main (see 7.2)

zone (see 7.2)

key (see 7.2)

acl (see 7.2)

channels (see 7.2)

loggers (see 7.2)

Each section has its own set of configuration elements.

main contains all the configuration parameters needed for starting up YADIFA

zone contains all the configuration parameters needed for the zones

channel and loggers are needed to configure your log information.

0 1 5

4.1 An authoritative name server

To allow YADIFA to answer queries for its domain names, you have to declare them to the zone
section.

4.1.1 Primary Name Server

An example of a zone with domain name somedomain.eu.

For example:

<zone>

domain somedomain.eu

file masters/somedomain.eu.txt

type master

</zone>

domain is the full qualified domain name.

file is the absolute or relative path of the zone file in text format.

type is the kind of name server YADIFA is for this zone. type can be:

Master

Slave.

In this example, YADIFA is configured as a master. This means that the original zone file is on
this server and you need to edit the zone file on this server.

Note :

For a working example you can find the zone file on page 40.

4.1.2 Slave name server

YADIFA is authoritative for the zone somedomain.eu, but does not have the original information.
YADIFA needs to get the information of a master for this zone file.

0 1 6

For example:

<zone>

domain somedomain.eu

file slaves/somedomain.eu.txt

type slave

master 192.2.0.1

</zone>

In this example the type changes to slave. YADIFA needs to know where it can find the master
zone file. This will be done with the additional configuration parameter master, where you can
specify the IP address of the master name server for this domain name.

4.2 Signals

On a unix-a-like operating systems you can send a signal to a process, this is done with the kill
command.

A few signals are implemented:

SIGTERM this will shutdown YADIFA properly

SIGHUP will reopen the log files

SIGUSR1 will save all zone files to disk.

For example:

ps -ax | grep yadifad

67071 2 S+ 0:03.47 ./yadifad

kill -HUP 67071

#

0 1 7

5 Server Technical

For now there are three entry points to the database:

1. Zone File

2. AXFR[3] and IXFR[6]

3. DNS UPDATE[8] .

All three use the same principles to accept a resource record:

First come, first served

Semantical errors will drop the relevant resource record

Syntactical errors will drop the relevant entity.

Dropping the relevant entity can mean several things. If a syntactical error occurs in a DNS
UPDATE[8] just this package will be dropped and not the relevant zone file. A syntactical error
can be a typo, but for security reasons the entity will be dropped completely.

A semantical error is not a typo, but something against the RFCs. If this occurs, only that resource
record will be dropped.

5.1 Zone file reader

The zone file reader will check each resource record as a single entity. Inconsistencies are only
checked once the whole zone has been loaded.

What are inconsistencies?

The apex of a zone file

0 1 8

http://www.ietf.org/rfc.html

Semantics of a resource record

CNAME’s alongside non-cname’s

Non-CNAME’s alongside cname’s

Non-existing MACROS / DIRECTIVES (eg.typos in MACROS / DIRECTIVES).

5.1.1 Known types

For more information check 8.3.

0 1 9

6 DNSSEC

6.1 Introduction

The DNS provides responses without validating their source. This means that it is vulnerable to
the insertion of invalid or malicious information, a flaw discovered by Dan Kaminsky in 2008.

This technical report documents the various components of the long-term solution to this kind of
cache-poisoning attack: DNSSEC.

6.2 DNSSEC Overview

In a nutshell, DNSSEC adds signatures to regular DNS responses in the form of Resource Record
Signature (RRSIG) resource records. A signature is the hash1 of a DNS response, encrypted with
the private part of a key pair2.

To be able to verify whether the response is legitimate, the receiver of a signed response should:

Calculate the hash of the response

Decrypt the signature with the public part of the key pair

Compare the newly calculated hash with the result of the decrypted signature.

If this comparison shows no differences, the receiver is sure of two things:

Integrity - the response has not been modified

1A hash of a sequence of characters is a transformation of that sequence to a sequence applying a certain math-
ematical formula with a fixed length. By recalculating the hash after transmission of the characters, one can detect
changes to this sequence as the recalculated hash will differ from the original hash.

2Public / private key encryption is a well - known encryption technology, in which a message is encrypted with
one part of a key pair. The resulting encrypted message can only be decrypted using the other part of the key pair.

0 2 0

Authenticity - the response comes from the expected source
(the only one to possess the private part of the key pair).

Note that the response itself is not encrypted. DNSSEC adds RRSIG records to responses, but the
records that hold the data remain unaltered. In this way, DNSSEC is backwards compatible as
non DNSSEC-aware name servers can and should ignore unknown data and continue to function
as expected.

The challenge in this scenario is to get the public part of the key pair to the users who need it for
verification in a secure way.

The public parts of key pairs are available via the DNS as they are published as Domain Name
System KEY (DNSKEY) resource records. When querying for DNSKEY records, the response to a
query also holds a signature for the DNSKEY record. But the question remains, should the receiver
simply accept that the data is authentic and use it?

The answer is no. To verify the signature of a DNSKEY record, the user must consult the parent
of the domain name. For domain names, such as eurid.eu, the parent is the TLD. For a TLD, the
parent is the root domain. To enable users to obtain the public part of a signed domain name in a
secure way, a hash of the public key is put in the parent zone as a Delegation Signer (DS) resource
record.

There it is signed with the private part of the parent zone key pair. In the case of eurid.eu, a hash
of the public key (DS) is put in the .eu zone where it is signed with the private key of .eu. For the
.eu zone itself, a hash of the .eu public key (DS) is put in the root zone, where it is signed with the
private key of the root zone.

This means that the receiver can obtain the public part of a key pair by querying for its hash in
the parent zone, and verify its signature with the public part of that parent zone’s key pair. This
process only takes us up one level in the DNS hierarchy.

There the question repeats itself: how can the receiver trust the signature from that parent zone
file? The answer lies in applying the same procedure: retrieving the public part of its key, the hash
from its parent and the hash’s signature.

But ultimately, some trust must be built in.

Herein lies the importance of having a signed Internet root zone, because receivers that verify signa-
tures only need to trust the public key of the root zone. This is the only public key necessary and it
can be obtained outside the DNS. It is available for download in several different formats together
with a signature file at: http://data.iana.org/root-anchors/. Before the root zone was signed on
15 July 2010, administrators had to manually configure and maintain public key information from
different branches in the DNS tree.

It is also understandable that TLD operators are working hard to publish their data with signatures,
because it is only if a TLD is DNSSEC-enabled that receivers can find a completed chain of trust,
allowing them to easily verify domain name signatures within that TLD. Now that the root zone

0 2 1

is signed and TLDs sign their data as well, registrars are also able to sign their DNS data.

6.3 Types of key pairs

Two types of keys are used in DNSSEC:

The key-signing key (KSK) - used only to sign the hash of DNSKEY information

The zone -signing key (ZSK) - used to sign the hashes of all resource records (A , NS, MX,
etc).

The more signatures generated with a particular key pair, the greater the chance of a successful
crypto-attack, in other words deducing the private part of a key pair by using the public part and
the available signatures. To prevent the signing of false information, key pairs should not be used
indefinitely. Every so often, new key pairs should be generated and used to resign the zone. The
frequency of key generation depends on the strength of the algorithm, key length and how often a
key is used.

Because strong algorithms and long keys require more resources, such as more CPU, the practice
is to use a weaker key pair, the ZSK, for all signatures but to change it regularly. Validity of these
signatures should be three to six months at most. A stronger key pair, the KSK, is only used to
sign the public key information. The KSK is changed less frequently, every one to two years. Only
a hash of the KSK appears in the root zone (as the DS record). Since this key is changed, or rolled,
less often, interaction with the parent is less frequent.

6.4 Algorithms

Several algorithms for calculating hashes and signatures have been defined. Specific name server
implementations or versions may not support all of the algorithms mentioned in the following
summary:

RSASHA1 (algorithm number 5) is declared mandatory by RFC 4034 . RSASHA1-NSEC3 - SHA1
(algorithm number 7) is defined by RFC 5155 . It is essentially the same algorithm as RSASHA1,
although the Next SECure records are NSEC3. The stronger algorithms, RSASHA256 (algorithm
number 8) and RSASHA512 (algorithm number 10) are both defined by RFC 5702.

The use of these latter algorithms is recommended, as attacks against SHA1 (used in algorithms
5 and 7) are increasing. Bear in mind that the newer algorithms, numbers 8 and 10, may not be
available in older DNS server implementations and, as verifying DNS name servers that do not
recognise an algorithm will treat the data as unsigned, it is unclear at the time of writing whether
end users will actually benefit from these stronger algorithms.

0 2 2

7 Configuration reference

7.0.1 The layout

The configuration file has some rules :

the configuration is read from a simple text file.

a comment starts after the ’#’ character.

empty lines have no effect.

a string can be double quoted, but is not mandatory.

The configuration file is made up of sections. A section starts with a with a <name> line and ends
with a </name> line.

Currently the following sections are implemented:

main

zone

key

acl

channels

loggers.

Unimplemented section names are ignored.

The section order is only of importance for sections of the same type where the principle first found
is first processed applies. In other words the last settings will overwrite ealier declarations of the
sam eparameter. One exception to this is the <zone> section where a declaration for the same
domain will result in an error DATABASE ZONE CONFIG DUP.

0 2 3

For example:

<zone>

domain somedomain.eu

file masters/somedomain.eu.txt

file masters/somedomain.eu.zone

type master

</zone>

<zone>

domain somedomain.eu

file masters/somedomain2.eu.txt

type master

</zone>

In this example for the zone somedomain.eu, the file will be “masters/somedomain.eu.zone”.

The processing order of each section type is determined by the server implementation.
Each section contains settings. A setting is defined on one line but can be spread over multiple
lines using parenthesis.

For example:

comment

comment

<first>

commment

setting0-name value ...

setting1-name value ...

</first>

<second>

setting2-name (

value

...

)

comment

</second>

0 2 4

7.1 The types

Each setting can be one of the following types.

TYPE DESCRIPTION

ACL A list of ACL descriptors. User-defined ACLs are found in the ’acl’
section. The ’any’ and ’none’ descriptors are always defined. Elements
of the list are separated by a ’,’ or a ’;’.

DNSSECTYPE DNSSEC type of the zone. Can be no-dnssec (none, no, off, 0), or dnssec
(nsec, nsec3, nsec3-optout).

ENUM A word from a specified set.

FLAG A boolean value. It can be true (“1”, ”enable”, “enabled”, “on”, “true”,
“yes”) or false (“0”, “disable”, “disabled”, “off”, “false”, “no”).

FQDN An Fully Qualified Domain Name (FQDN) text string. i.e.:
www.eurid.eu.

GID Group ID. (Can be a number or a name)

HOST(S) A (list of) host(s). A host is defined by an IP (v4 or v6) and can be
followed by the word ‘port’ and a port number. Elements of the list are
separated by a ‘,’ or a ‘;’.

INTEGER / INT A base ten integer.

PATH A file or directory path. i.e.: “/var/zones”.

STRING / STR A text string. Double quotes can be used but are not mandatory. With-
out quotes the string will be taken from the first non-blank charater to
the last non-blank character.

UID User ID. (Can be a number or a name)

Table 7.1: Types

7.2 The sections

The ‘main’ section

This section defines the global or default settings of the server.

PARAMETER TYPE DEFAULT DESCRIPTION

additional-from-auth FLAG true If this flag is enabled, the server will
reply with the additional section.

allow-notify ACL any Default notify access control list.
Only the servers matching the ACL
will be handled.

allow-query ACL any Default query access control list.
Only the clients matching the ACL
will be replied to.

0 2 5

allow-transfer ACL none Default transfer access control list.
Only the clients matching the ACL
will be allowed to transfer a zone
(AXFR/IXFR).

allow-update ACL none Default update access control list.
Only the clients matching the ACL
will be allowed to update a zone.

answer-formerr-packets FLAG true If this flag is disabled, the server will
not reply to badly formatted pack-
ets.

authority-from-auth FLAG true If this flag is enabled, the server will
reply with the authority section.

axfr-compress-packets FLAG true Enables the DNS packet compres-
sion of each AXFR packet.

axfr-max-packet-size INT 4096 bytes The maximum size of an AXFR
packet. (MIN: 512, MAX: 65535)

axfr-max-record-by-packet INT 0 The maximum number of records
in each AXFR packet. Older name
servers can only handle 1. Set to 0
to disable the limit.

axfr-retry-delay INT 600 sec Number of seconds between each
retry for the first transfer from the
master name server.

axfr-retry-jitter INT 180 sec Jitter applied to axfr-retry-delay.

chroot FLAG off Enabling this flag will make the
server jail itself in the chroot-path
directory.

chroot-path PATH / The directory used for the jail.

cpu-count-override INT 0 Overrides the detected number of
logical cpus (0 : automatic, MAX:
256).

daemon FLAG true Enabling this flag will make the
server detach from the console and
work in background.

data-path PATH /var/zones The base path were lies the data
(base zone file path, journaling data,
temporary files, etc.)

dnssec-thread-count INT 0 The maximum number of threads
used for DNSSEC parallel tasks
(mostly signatures) (0 : automatic,
MAX: 128)

edns0-max-size INT 4096 bytes EDNS0 packets size.

gid GID 0 The group ID that the server will
use.

keys-path PATH /var/zones/keys The base path of the DNSSEC keys.

listen HOST(S) 0.0.0.0 The list of interfaces to listen to.

0 2 6

log-path PATH /var/log The base path where the log files are
written.

max-tcp-queries INT 5 The maximum number of allowed
parallel TCP connections, allowed.
(MIN: 0, MAX: 512)

pid-file STR yadifa.pid The pid file name.

pid-path PATH /var/run The path for the pid file.

queries-log-type INT 1 Query log format. (0: none, 1:
YADIFA format, 2: BIND format,
3: YADIFA and BIND format at
once)

server-port,port INT 53 The default dns port. (MIN: 1,
MAX:65535)

sig-validity-interval INT 31 days The number of hours for which an
automatic signature is valid. (MIN:
7 days , MAX: 366 days)

sig-validity-jitter, sig-jitter INT 3600 sec The signature expiration validity
jitter in seconds (1 hour). (MIN: 0,
MAX: 86400 sec)

sig-validity-regeneration INT auto hours The signatures expiring in less than
the indicated amount of hours will
be recomputed. (MIN: 24 hours,
MAX: 168 hours, default: chosen by
YADIFA)

statistics FLAG true The server will log a report line
about some internal statistics.

statistics-max-period INT 60 sec The period in seconds between two
statistics log lines. (MIN: 1, MAX:
31 days)

tcp-query-min-rate INT 4096 bytes / sec The minimum rate required in a
TCP connection (read and write).
Slower connections are closed. The
units are bytes per second.

thread-count-by-address INT 0 Number of independent threads
used to process each listening ad-
dress. (0: single threaded, MAX:
number of CPU’s, -1: YADIFA
chooses)

uid UID 0 The user ID that the server will use.

version-chaos STR ”yadifa version#” The string returned by a version
TXT CH query.

xfr-connect-timeout INT 5 sec Timeout for establishing a connec-
tion for AXFR and IXFR transfers.

xfr-path PATH /var/zones/xfr The base path used for AXFR and
journal storage.

Table 7.2: Parameters main section

0 2 7

For example:

0 2 8

<main>

chroot on

daemonize true

chroot-path /srv/yadifa/var

keys-path /zones/keys

data-path /zones

log-path /log

pid-path /run

pid-file yadifa.pid

cpu-count-override 6

dnssec-thread-count 10

max-tcp-queries 100

tcp-query-min-rate 6000

additional-from-auth yes

authority-from-auth yes

answer-formerr-packets no

server-port 53

listen 192.0.2.53, 192.0.2.153 port 8053

uid yadifad

gid yadifad

statistics yes

statistics-max-period 60

could have been written as: ’version not disclosed’ without the ’

version "not disclosed"

note: Any is default anyway

allow-query any

allow-update operations-network ; public-network

allow-transfer slaves ; operations-network ; public-network

sig-signing-type 65542

sig-validity-interval 360

sig-validity-regeneration 48

sig-validity-jitter 1800

axfr-max-record-by-packet 0

axfr-max-packet-size 32768

axfr-compress-packets true

</main>

0 2 9

The ‘zone’ sections

Each zone is defined by one section only.

sig-* and allow-* settings defined here have precedence over those in the ‘main’ section.

For example:

<zone>

domain somedomain.eu.

type master

file-name masters/somadomain.eu-signed.txt

The rest is not mandatory ...

also-notify 192.0.2.194, 192.0.2.164

Doing this is pointless since it’s both the global setting AND

the default one

allow-query any

allow-update my-network; 127.0.0.1

allow-transfer my-slaves

Same as global setting

sig-signing-type 65542

sig-validity-interval 720 # 30 days is enough

sig-validity-regeneration 12

sig-validity-jitter 7200

</zone>

<zone>

domain another-zone.eu

type slave

master 192.0.2.53

</zone>

The ‘key’ sections

Each TSIG key must be defined by one section.

For example:

0 3 0

PARAMETER TYPE DEFAULT DESCRIPTION

notify-retry-
period-increase

FLAG TRUE (TRUE: DNS NOTIFY[7] will be send
to all name servers in APEX, FALSE: the
content of APEX will be ignored)

notify-retry-count INT 5 Number of time YADIFA tries to send a
DNS NOTIFY[7] .

notify-retry-
period

INT 1 Time period between two DNS
NOTIFY[7] tries.

allow-notify ACL as main Default notify access control list. Only the
servers matching the ACL will be handled.

allow-query ACL as main Default query access control list. Only the
clients matching the ACL will be replied
to.

allow-transfer ACL as main Default transfer access control list. Only
the clients matching the ACL will be al-
lowed to transfer a zone (AXFR/IXFR).

allow-update ACL as main Default update access control list. Only
the clients matching the ACL will be al-
lowed to update a zone.

also-notify HOST(S) - The list of servers to notify in the event of
a change. Currently only used by masters
when a dynamic update occurs.

dnssec-mode DNSSECTYPEnone Type of DNSSEC used for the zone. As
master name sever, YADIFA will try to
maintain that state.

domain FQDN - Mandatory. Sets the domain of the zone
(i.e.: eurid.eu).

file-name, file PATH - Sets the zone file name. Only mandatory
for a master zone.

master HOST - Mandatory for a slave. Sets the master
server. Only one is supported.

sig-validity-
interval

INTEGER as main The number of hours for which an auto-
matic signature is valid. (MIN: 7 days ,
MAX: 366 days)

sig-validity-jitter,
sig-jitter

INTEGER as main The signature expiration validity jitter in
seconds (1 hour). (MIN: 0, MAX: 86400
sec)

sig-validity-
regeneration

INTEGER as main The signatures expiring in less than the
indicated amount of hours will be recom-
puted. (MIN: 24 hours, MAX: 168 hours,
default: chosen by YADIFA)

type ENUM - Mandatory. Sets the type of zone : either
‘master’ or ‘slave’.

Table 7.3: Parameters zone sections

0 3 1

PARAMETER TYPE DEFAULT DESCRIPTION

algorithm ENUM - Mandatory. Sets the algorithm of
the key. Supported values are ‘hmac-
md5’, ‘hmac-sha1’, ‘hmac-sha224’, ‘hmac-
sha256’, ‘hmac-sha384’, ‘hmac-sha512’
(the algorithm names are case insensitive)

name FQDN - Mandatory. Sets the name of the key.

secret TEXT - Mandaroty. Sets the value of the key.
BASE64 encoded.

Table 7.4: Parameters key sections

<key>

name yadifa

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

<key>

name eu-slave1

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

<key>

name eu-slave2

algorithm hmac-md5

secret WouldNtYouWantToKnowIt==

</key>

The ‘acl’ section

Each entry of the acl section defines a rule of access. Each rule is a name (a single user-defined
word) followed by a rule in the form of a list of statements. The separator can be ’,’ or ’;’. The
’any’ and ’none’ names are reserved. A statement tells if a source is accepted or rejected. Reject
statements are prefixed with ’ !’. Statements are evaluated in the following order : first from more
specific to less specific, then from reject to accept. If a statement matches, the evaluation will stop
and accordingly accept or reject the source. If no statement matches, then the source is rejected.

A statement can be either:

An IPv4 or an IPv6 address followed (or not) by a mask.

0 3 2

[!] ipv4 |ipv6[/mask]

For example:

internal-network 192.0.2.128/26;2001:DB8::/32

The word ‘key’ followed by the name of a TSIG key.

key key-name

For example:

slaves key public-slave;key hidden-slave

An ACL statement name from the ‘acl’ section (Recursion is forbidden and duly rejected).

acl-name

For example:

who-can-ask-for-an-ixfr master;slaves;127.0.0.1

For example:

0 3 3

<acl>

user-defined-name rule-statements

rule to accept this TSIG key

slave1 key eu-slave1

rule to accept that TSIG key

slave2 key eu-slave2

rule to accept what the slave1 and slave2 rules are accepting

slaves slave1;slave2

rule to accept this IP

master 192.0.2.2

rule to accept both this IPv4 network and that IPv6 network

operations 192.0.2.128/28;2001:DB8::/32

Now about the order of each ACL statement : the following rule

order-example-1 192.0.2.128/26 ; 192.0.2.5 ;

! 192.0.2.133 ; ! 192.0.2.0/26

will be understood the same way as this one

order-example-2 192.0.2.5 ; !192.0.2.133 ;

192.0.2.128/26 ; !192.0.2.0/26

Because in effect, both will be seen internally as:

order-example-3 !192.0.2.133 ; 192.0.2.5 ;

!192.0.2.0/26 ; 192.0.2.128/26

</acl>

The ‘channels’ section Channels are loggers output stream definitions. Three types are sup-
ported:

file

STDOUT, STDERR

0 3 4

PARAMETER DESCRIPTION

auth Security/authorisation messages (DEPRECATED: use authpriv)

authpriv Security/authorisation messages (private)

cron Clock daemon (cron and at)

daemon System daemons without separate facility value

ftp Ftp daemon

local0 Reserved for local use

local1 Reserved for local use

local2 Reserved for local use

local3 Reserved for local use

local4 Reserved for local use

local5 Reserved for local use

local6 Reserved for local use

local7 Reserved for local use

lpr Line printer subsystem

mail Mail subsystem

news USENET news subsystem

syslog Messages generated internally by syslogd(8)

user Generic user-level messages

uucp UUCP subsystem

Table 7.5: Parameters syslog

syslog.

Each channel is a name (a single user-defined word) followed by:

the “syslog” keyword, defining a channel to the syslog daemon. The keyword can be followed
by case-insensitive facilities and options arguments. These arguments will be given to syslog.

Supported facilities:

Supported options:

Note :

For more information: man syslog

For example:

syslog syslog CRON,PID

The ‘STDOUT’ case-sensitive keyword, defining a channel writing on the standard output.

For example:

0 3 5

PARAMETER DESCRIPTION

cons Write directly to system console if there is an error while sending
to system logger.

ndelay Open the connection immediately (normally, the connection is
opened when the first message is logged).

nowait Don’t wait for child processes that may have been created while
logging the message (On systems where it is relevant).

odelay Opening of the connection is delayed until syslog() is called (This
is the default, and need not be specified).

perror (Not in POSIX.1-2001.) Print to stderr as well.

pid Include PID with each message.

Table 7.6: Parameters for channels

default-output STDOUT

The ‘STDOUT’ case-sensitive keyword, defining a channel writing on the standard output.

The ’STDERR’ case-sensitive keyword, defining a channel writing on the standard error.

For example:

default-error STDERR

A relative file path, defining a channel writing on a file (append at the end). The file is
followed by the file rights as an octal number.

For example:

yadifa yadifa.log 0644

For example:

0 3 6

<channels>

user-defined-name parameters

channel ’statistics’: a file called stats.log

with 0644 access rights

#

statistics stats.log 0644

channel ’syslog’ : a syslog daemon output using

the local6 facility and logging the pid of the process

#

syslog syslog local6,pid

channel ’yadifa’: a file called yadifa.log with 0644 access rights

#

yadifa yadifa.log 0644

channel ’debug-out’ : directly printing to stdout

#

debug-out STDOUT

channel ’debug-err’ : directly printint to stderr

#

debug-err STDERR

</channels>

The ‘loggers’ section

Yadifa has a set of log sources, each of which can have their output filtered (or ignored) and sent
to a number of channels.

A logger line is defined as the source name followed by the list of levels and then the list of channels.
The lists are ‘,’ separated.

The current set of sources is:

The current set of levels is:

Note :

Messages at the ‘crit’, ‘alert’ and ‘emerg’ levels do trigger an automatic shutdown of the server.

0 3 7

SOURCES DESCRIPTION

database Database output (incremental changes, integrity checks, etc.)

dnssec DNSSEC output (NSEC, NSEC3, signatures events)

server Server actions output (network setup, database setup, queries, etc.).

statistics Internal statistics periodic output

system Low-level output (thread management, task scheduling, timed events)

zone Internal zone loading output

Table 7.7: logger sources

LEVELS DESCRIPTION

emerg System is unusable

alert Action must be taken immediately

crit Critical conditions

err Error conditions

warning Warning conditions

notice Normal, but significant, condition

info Informational message

debug Debug-level 0 message

debug1 Debug-level 1 message

debug2 Debug-level 2 message

debug3 Debug-level 3 message

debug4 Debug-level 4 message

debug5 Debug-level 5 message

debug6 Debug-level 6 message

debug7 Debug-level 7 message

all All levels

* All levels

Table 7.8: logger levels

0 3 8

If the logger section is omitted completely, everything is logged to the STDOUT channel. Negations
are not allowed.

For example:

<loggers>

info, notice and warning level messages from the database logging

will be outp

database info,notice,warning yadifa

database err,crit,alert,emerg yadifa,syslog

server * yadifa

stats * statistics

system * debug-err

queries * queries

zone * yadifa

</loggers>

0 3 9

8 Zones

Only textual zones are implemented.

The format of a zone file is defined in RFC 1034[4] and RFC 1035[5] .

For example:

;; Example domain

$TTL 86400 ; 24 hours

$ORIGIN somedomain.eu.

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (

1

3600

1800s

3600000s

600

)

86400 IN MX 10 mail.somedomain.eu.

86400 IN NS ns1.somedomain.eu.

ns1.somedomain.eu. 86400 IN A 192.0.2.2

mail.somedomain.eu. 86400 IN A 192.0.2.3

www.somedomain.eu. 86400 IN A 192.0.2.4

8.1 MACROS

Some macros are implemented:

0 4 0

TTL

ORIGIN

8.1.1 $TTL

This macro gives the default TTL for those resource records which do not have their own TTL.

8.1.2 $ORIGIN

This macro gives the domain name for the next resource records not terminating with a “.”.

8.2 Classes

YADIFA knows only one class:

IN cfr. rfc 1025

8.3 Resource records types

YADIFA knows only these types, everything else will give an error and be ignored.

SOA[5]

NS

MX

DNSKEY

RRSIG

NSEC

NSEC3PARAM

NSEC3

A

AAAA

CNAME

0 4 1

DS

PTR

TXT

HINFO

DNAME.

0 4 2

Bibliography

[1] R. Arends. Resource Records for the DNS Security Extensions, March 2005. rfc 4034 .

[2] R. Arends. NS Security (DNSSEC) Hashed Authenticated Denial of Existence, March 2008. rfc
5515 .

[3] E. Lewis. DNS Zone Transfer Protocol (AXFR), June 2010. rfc 5936 .

[4] Paul Mockapetris. DOMAIN NAMES - CONCEPTS AND FACILITIES, november 1987. rfc
1034 .

[5] Paul Mockapetris. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION, novem-
ber 1987. rfc 1035 .

[6] M. Ohta. Incremental Zone Transfer in DNS, August 1996. rfc 1995 .

[7] Paul Vixie. DNS NOTIFY, August 1996. rfc 1996 .

[8] Paul Vixie. DNS UPDATE, April 1997. rfc 2136 .

[9] Paul Vixie. EXTENSION MECHANISMS FOR DNS (EDNS0), August 1999. rfc 2671 .

0 4 3

http://www.ietf.org/rfc/rfc4034.txt
http://www.ietf.org/rfc/rfc5155.txt
http://www.ietf.org/rfc/rfc5155.txt
http://www.ietf.org/rfc/rfc5936.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
http://www.ietf.org/rfc/rfc1995.txt
http://www.ietf.org/rfc/rfc1996.txt
http://www.ietf.org/rfc/rfc2136.txt
http://www.ietf.org/rfc/rfc2671.txt

Index

configuration
additional-from-auth, 25
algorithm, 32
allow-notify, 25, 31
allow-query, 25, 31
allow-transfer, 26, 31
allow-update, 26, 31
also-notify, 31
answer-formerr-packets, 26
authority-from-auth, 26
axfr-compress-packets, 26
axfr-max-packet-size, 26
axfr-max-record-by-packet, 26
axfr-retry-delay, 26
axfr-retry-jitter, 26
chroot, 26
chroot-path, 26
cpu-count-override, 26
daemon, 26
data-path, 26
database, 38
dnssec, 38
dnssec-mode, 31
dnssec-thread-count, 26
domain, 31
edns0-maxsize, 26
file-name, 31
gid, 26
keys-path, 26
listen, 26
log-path, 27
master, 31
max-tcp-queries, 27
name, 32
notify-retry-count, 31
notify-retry-period, 31
notify-retry-period-increase, 31
pid-file, 27
pid-path, 27
queries-logtype, 27

secret, 32
server, 38
server-port, 27
sig-validity-interval, 27, 31
sig-validity-jitter, 27, 31
sig-validity-regeneration, 27, 31
statistics, 27, 38
statistics-max-period, 27
system, 38
tcp-query-min-rate, 27
thread-count-by-address, 27
type, 31
uid, 27
version-chaos, 27
xfr-connect-timeout, 27
xfr-path, 27
zone, 38

resource type
NSEC, 6
NSEC3, 6
SOA, 41

rfc, 6, 18
1034, 40
1035, 40
AXFR, 6, 18
dns notify, 31
dns update, 18
EDNS0, 6
IXFR, 6, 18

0 4 4

	Introduction
	Domain Name System
	Zones
	Authoritative name servers

	Resource Requirements
	Hardware
	CPU
	Memory
	Supported Operating Systems

	Installation
	Server installation

	Server configuration
	An authoritative name server
	Primary Name Server
	Slave name server

	Signals

	Server Technical
	Zone file reader
	Known types

	DNSSEC
	Introduction
	DNSSEC Overview
	Types of key pairs
	Algorithms

	Configuration reference
	The layout
	The types
	The sections

	Zones
	MACROS
	$TTL
	$ORIGIN

	Classes
	Resource records types

	Bibliography

