
Reference manual
version 2.4.0

Contents

1 Introduction 7
1.1 Domain Name System . 8

1.1.1 Zones . 9
1.1.2 Authoritative name servers . 9

2 Resource Requirements 11
2.1 Hardware . 11

2.1.1 CPU . 11
2.1.2 Memory . 11

2.2 Supported Operating Systems . 11

3 Installation 13
3.1 Server . 13
3.2 Client . 13
3.3 Libraries . 14
3.4 From Sources . 14

3.4.1 Configure Options . 14
3.4.2 Server installation . 16

3.5 From Packages . 17
3.5.1 RHEL/CentOS/Fedora . 17
3.5.2 Debian . 18
3.5.3 Ubuntu . 19
3.5.4 Arch Linux . 19
3.5.5 Gentoo . 20
3.5.6 FreeBSD . 20
3.5.7 OpenBSD . 21
3.5.8 Solaris . 21
3.5.9 Mac OS X . 21

4 Server Configuration 22
4.1 An authoritative name server . 24

4.1.1 Primary name server . 24
4.1.2 Secondary name server . 24

4.2 Signals . 25

5 Server Technical 26
5.1 Zone file reader . 26

5.1.1 Known types . 27

6 Client 28
6.1 YADIFA . 28

6.1.1 Control commands . 30

7 Key roll 41
7.1 Introduction . 41
7.2 Configuration . 42
7.3 Generate time format . 44

7.3.1 Command line . 45
7.3.2 Master name server side setup . 45
7.3.3 yakeyrolld first sequence . 46
7.3.4 yakeyrolld runtime usage . 46
7.3.5 Extend the time covered by the steps . 47

8 Domain Name System Security Extensions (DNSSEC) 50
8.1 Introduction . 50
8.2 DNSSEC overview . 50
8.3 Types of key pairs . 52
8.4 Algorithms . 52

9 DNSSEC Policies 53
9.1 Introduction . 53
9.2 What is needed for DNSSEC? . 53

9.2.1 Keys for signing . 53
9.2.2 Signed zone . 55
9.2.3 Delegated zone . 56

9.3 What is needed for yadifa? . 56
9.3.1 Zone . 57
9.3.2 DNSSEC-Policy . 57
9.3.3 Denial . 58
9.3.4 Key Suite . 60
9.3.5 Key Template . 61
9.3.6 Key-roll . 62

10 DNS Name Server Identifier (NSID) 65
10.1 Introduction . 65
10.2 NSID payload . 65

11 DNS Response Rate Limiting (RRL) 67
11.1 Introduction . 67
11.2 What is it? . 67
11.3 The problem . 67
11.4 A solution . 68

12 Resource Record Signature[49] (RRSIG) Update Allowed 69
12.1 Introduction . 69
12.2 The problem . 69

12.3 A solution . 69

13 Multi Master 71
13.1 Introduction . 71

13.1.1 Design . 71
13.2 What is needed? . 78

13.2.1 Zone . 78

14 Configuration Reference 79
14.1 Layout . 79
14.2 Types . 81
14.3 Sections . 82

14.3.1 <main> section . 82
14.3.2 <zone> sections . 87
14.3.3 <key> sections . 90
14.3.4 <acl> section . 91
14.3.5 <channels> section . 92
14.3.6 <loggers> section . 95
14.3.7 <nsid> section . 98
14.3.8 <rrl> section . 99
14.3.9 <dnssec-policy> section . 100
14.3.10 <key-suite> section . 101
14.3.11 <key-roll> section . 101
14.3.12 <key-template> section . 102
14.3.13 <denial> section . 103

15 Zones 105
15.1 MACROS . 105

15.1.1 @ . 106
15.1.2 $TTL . 106
15.1.3 $ORIGIN . 107

15.2 Classes . 107
15.3 Resource record types . 107

16 Journal 110

17 Statistics 112

18 Configuration Examples 115
18.1 Introduction . 115
18.2 YADIFA as a primary name server . 116

18.2.1 The One That is Really Easy . 116
18.2.2 The One With Activation of Logging . 117
18.2.3 The One With NSID . 119
18.2.4 The One With RRL . 120
18.2.5 The One With DNSSEC Policy ’diary’ style 122
18.2.6 The One With DNSSEC Policy ’relative’ style 124
18.2.7 The One With RRSIG Update Allowed . 126
18.2.8 The One With the Controller . 128

18.3 YADIFA as a secondary name server . 130
18.3.1 The One With One Master . 130
18.3.2 The One With Several Masters . 131
18.3.3 The One With Activation of Logging . 132
18.3.4 The One With NSID . 134
18.3.5 The One With RRL . 135

19 Troubleshooting 137
19.1 Submitting a bug report . 137
19.2 Stacktrace . 140

19.2.1 Using a core dump . 141
19.2.2 Running yadifad in the debugger . 142

19.3 Building yadifad with even more debugging information 143

Bibliography 144

Index 147

List of Figures

1.1 DNS hierarchy . 8

18.1 Primary name server (simple configuration) . 116
18.2 Primary name server with logging . 117
18.3 Primary name server with NSID . 119
18.4 Primary name server with RRL . 120
18.5 Primary name server (DNSSEC policy ’diary’ style) 122
18.6 Primary name server (DNSSEC policy ’relative’ style) 124
18.7 Primary name server (RRSIG Update Allowed) . 126
18.8 Primary name server with controller . 128
18.9 Secondary name server (one master) . 130
18.10 Secondary name server (several masters) . 131
18.11 Secondary name server with logging . 132
18.12 Secondary name server with NSID . 134
18.13 Secondary name server with RRL . 135

1
Introduction

“Yet Another DNS Implementation For All” (YADIFA) is a name server implementation developed
by EURid vzw/absl (EURid), the registry for the .eu top-level domain name. EURid devel-
oped YADIFA to increase the robustness of the .eu name server infrastructure by adding a stable
alternative to the other name server implementations in use.

In a nutshell, YADIFA:

is an authoritative name server, in both a master and slave configuration

is RFC compliant

is portable across multiple Operating Systems including GNU/Linux, BSD and OSX

is written from scratch in C. It is a clean implementation, which uses the OpenSSL library.

supports EDNS0 [55] (EDNS0)

supports Domain Name System Security Extensions[48] (DNSSEC) with NSEC[49] (NSEC)
and NSEC3[11] (NSEC3)

has full and incremental zone transfer handling (DNS Zone Transfer Protocol [20] (AXFR)
and Incremental Zone Transfer[44] (IXFR)).

DNSSEC signing service

In future releases new features will be added, including:

recursion

caching

validation

split horizon

plug-in system to integrate with EURid’s proprietary systems

0 0 7

https://www.eurid.eu
https://www.ietf.org/rfc.html

dynamic provisioning of new domain names

have a backend which is Structured Query Language (SQL)-based1

1.1 Domain Name System

The Domain Name System[43] (DNS) is a system and network protocol used on the Internet. DNS
is a globally distributed database with domain names, which can translate those domain names into
IP addresses and vice versa. All Internet-connected systems (routers, switches, desktops, laptops,
servers, etc.) use DNS to query DNS servers for an IP addresses.

DNS is used by most services on the Internet. Mail, which itself uses the SMTP-protocol, uses
DNS to get information about where to send emails.

DNS is an hierarchical, distributed system (see figure 1.1). One DNS server cannot hold all the
information.

www
ftp
mail

... eurid ...

...eu com gov info

root

Figure 1.1: DNS hierarchy

If you want to surf to https://www.eurid.eu for example, your computer needs the IP address of
www.eurid.eu.

It first asks to the root name servers which guide you to the .eu name servers, which in turn guides
you to the EURid name servers, where you will get the IP address of www.eurid.eu.

1YADIFA will read zone from files and SQL-based backends

0 0 8

https://www.eurid.eu

1.1.1 Zones

The information about a domain name can be found in zones. In these zones you will not only find
a website’s IP address, eg. www.eurid.eu, or a mail server’s IP address, but also the information
that points you to a subsection of the zone.

To clarify:
To find the IP address of www.eurid.eu, you start your search at the root server. You are not
given the website’s IP address, but are pointed in the direction where you will be able to find the
information. The root server points you to a subsection of its zone, it points you to the name
server(s) of .eu. This we call a delegation. The zone information has a Name Server [43] (NS)
resource record (RR) which contains the names of the .eu name servers. In the .eu zone information
you will still not find the IP address of the www.eurid.eu website, but you will find the delegation
to the next domain name, eurid.eu. In the name servers of eurid.eu you will find the IP address of
www.eurid.eu.

1.1.2 Authoritative name servers

Name servers with all the information for a particular zone are the authoritative name servers for
that zone. When querying the information of a domain name with an authoritative name server,
the name server will give not only the answer, but will also indicate that it is authoritative for
the information it has provided, by sending an Authoritative Answer flag along with the result.

For redundacy purposes a zone does not have only one authoritative name server. Good practice
is to have a second and/or third name server in a different sub network.

Primary name server

Only one name server has the original zone information. Most name servers have this kind of
information in a text file, also known as a zone file. Which authoritative name server is the
primary name server of a domain name can be found in the Start Of Authority (SOA) RR. This
information can be obtained from any of the domain name’s authoritative name server(s).

Sometimes a primary name server is called master name server.

Secondary name server

The secondary name server has the same information as the primary name server, but differs
in that it does not have the original zone file. A secondary name server receives its initial
information from a transfer of the primary name server. There are several techniques for getting
this information.

0 0 9

Sometimes a secondary name server is called slave name server.

0 1 0

2
Resource Requirements

2.1 Hardware

2.1.1 CPU

The Central Processing Unit (CPU) must be able to handle 64-bit integers (natively or through
the compiler). It has to run a memory model where the data pointer size must be equal to the code
pointer size. Threading is also required.

2.1.2 Memory

One record takes about 135 bytes of memory. Enabling DNSSEC is more expensive and triples
that value. At runtime, zone management and processing may require additional storage space, up
to 150% of the zone file size.

2.2 Supported Operating Systems

Please find below a list of operating systems and architectures we support and which are known to
work.

OS x86-32 x86-64 arm64

Debian 10 YES YES YES1

Ubuntu 20.04 LTS YES YES YES1

Raspbian 9 N/A N/A YES2

Raspbian 10 N/A N/A YES34

CentOS 76 NO NO NO
CentOS 8.2 YES YES

1qemu-aarch64 emulated
2Pi Zero W
3Pi 2 Model B
4Pi 4
5GCC 4.8 is missing stdatomic.h
6missing required features

0 1 1

https://en.wikipedia.org/wiki/Central_processing_unit

Fedora 32 N/A YES YES2

Arch N/A YES N/A
OpenSUSE 15.1 N/A YES
FreeBSD 11.4-RELEASE YES
FreeBSD 12.1-RELEASE YES
Windows 10 WSL2 WSL2
MacOS 10.15 N/A TODO N/A
OpenBSD6 NO NO NO

SUPPORTED OSes

YADIFA supports a number of different cryptographic backends. The SSL backend needs to be
chosen at compile time and can not be dynamically changed. Note that the client and server will
only be able to use the algorithms supported by the SSL backend.

LIBRARY VERSION

OpenSSL 1.1.1
LibreSSL 3.1.4

SUPPORTED SSL Libraries

The architecture of YADIFA is very portable and will run on most flavours of GNU/Linux but
these configurations are untested.

0 1 2

3 Installation

The current version of YADIFA is: 2.4.0

YADIFA is a collection of two daemons, yadifad, yakeyrolld; one client, yadifa; three libraries;
seven man pages, yadifad.8 , yadifa.8 , yadifa.rc.5 , yadifa.conf.5 , yadifad.conf.5 , yakeyrolld.conf.5
and yakeyrolld.8 ; and example configuration files.

3.1 Server

Two daemon yadifad, yakeyrolld

A man page yadifad.8

A man page yadifad.conf.5

A yadifad.conf.example file

A man page yakeyrolld.8

A man page yakeyrolld.conf.5

A yakeyrolld.conf.example file.

3.2 Client

A remote access tool yadifa for the server yadifad

A name server lookup tool yadifa

A man page for yadifa yadifa.8

A man page yadifa.rc.5

A man page yadifa.conf.5 .

0 1 3

3.3 Libraries

dnscore

dnsdb

dnslg.

3.4 From Sources

Everything can be installed in a GNU fashion with configure, make and make install.

YADIFA successfully compiles with:

COMPILER VERSION

GCC 7.5.0 / 8.3.1 / 8.4.0 / 9.3.0 / 10.0.1
CLANG 6.0.1 / 7.0.1 / 8.0.1 / 9.0.1 / 10.0.0

YADIFAD builds

YADIFA will work with other compilers. GCC 4.8.x has a bug which omits the file stdatomic.h,
which is required by YADIFA to build.

If you want to compile YADIFA for a certain compiler you need to add the “CC” environmental
variable:

shell

$> ./ configure CC=gcc -10

or

shell

$> ./ configure CC=clang

3.4.1 Configure Options

You can configure YADIFA with several options, the most notable options available:

0 1 4

Functionality

OPTION DESCRIPTION

–enable-shared build shared libraries [default=no]
–enable-static build static libraries [default=yes]
–disable-build-timestamp Disable timestamps in the build
–disable-yadifa Disable building the controller of yadifad
–disable-rrl Disable DNS Response Rate Limiter
–disable-master Disable DNS master
–disable-ctrl Disable remote control support
–disable-nsid Disable NSID support
–disable-dynupdate Disable dynamic update support
–disable-rrsig-management Disable RRSIG verification and generation for zones
–disable-zalloc Disable zalloc memory system
–enable-log-thread-id Enable write the thread id in each line of log
–disable-log-thread-tag Disable a column with a 8 letters human-readable tag identifying

a thread in each log line (overrides the thread id)
–enable-log-pid Enable write the pid in each line of log
–enable-full-ascii7 Enable YADIFA will now accept ASCII7 characters in DNS names

(not recommended)
–disable-ecdsa Disable Elliptic Curve (ECDSA) support (i.e.: when the available

OpenSSL does not supports it)
–enable-systemd-resolved-
avoidance

Avoid conflict with systemd-resolved. Effectively changes the de-
fault value of ”do-no-listen” to ”127.0.0.53 port 53”.

–enable-non-aa-axfr-
support

Enable Allows AXFR answer from master without AA bit set
(Microsoft DNS)

–enable-lto Enable LTO support, requires gold linker
–without-tools build ”build without the DNS tools”
–without-tests build ”build without the test programs”

CONFIGURE OPTIONS

Location

OPTION DESCRIPTION

0 1 5

–prefix=PREFIX install architecture-independent files in PREFIX [/usr/local]
–exec-prefix=EPREFIX install architecture-dependent files in EPREFIX [PREFIX]
–bindir=DIR user executables [EPREFIX/bin]
–sbindir=DIR system admin executables [EPREFIX/sbin]
–sysconfdir=DIR read-only single-machine data [PREFIX/etc]
–localstatedir=DIR modifiable single-machine data [PREFIX/var]
–libdir=DIR object code libraries [EPREFIX/lib]
–includedir=DIR C header files [PREFIX/include]
–datarootdir=DIR read-only arch.-independent data root [PREFIX/share]
–mandir=DIR man documentation [DATAROOTDIR/man]
–docdir=DIR documentation root [DATAROOTDIR/doc/yadifa]

CONFIGURE OPTIONS

3.4.2 Server installation

When installing YADIFA in /opt/, the install prefix needs to be set to /opt/

shell

$> tar zxvf yadifa2.4.0-9809.tar.gz
$> cd yadifa -2.4.0-9809
$>
$> ./ configure --prefix =/ opt/ yadifa /
$> make
$> sudo make install

After the installation a tree structure with files will have been created:

${ install_prefix }/ bin/
${ install_prefix }/ etc/
${ install_prefix }/ include / dnscore /
${ install_prefix }/ include /dnsdb/
${ install_prefix }/ include /dnslg/
${ install_prefix }/ lib/
${ install_prefix }/ sbin/
${ install_prefix }/ share/man/man5/
${ install_prefix }/ share/man/man8/
${ install_prefix }/ share/doc/ yadifa
${ install_prefix }/ var/log/
${ install_prefix }/ var/run/
${ install_prefix }/ var/zones/keys/
${ install_prefix }/ var/zones/ masters /
${ install_prefix }/ var/zones/ slaves /
${ install_prefix }/ var/zones/xfr/

0 1 6

The most important files are found in:

${ install_prefix }/ etc/ yadifad .conf
${ install_prefix }/ bin/ yadifa
${ install_prefix }/ sbin/ yadifad
${ install_prefix }/ sbin/ yakeyrolld
${ install_prefix }/ share/man/man5/ yadifa .rc.5
${ install_prefix }/ share/man/man5/ yadifad .conf .5
${ install_prefix }/ share/man/man5/ yakeyrolld .conf .5
${ install_prefix }/ share/man/man8/ yadifa .8
${ install_prefix }/ share/man/man8/ yadifad .8
${ install_prefix }/ share/man/man8/ yakeyrolld .8

An elaborate configuration can be found at:

${ install_prefix }/ share/doc/ yadifa / yadifad .conf

Depending on the manner of compilation you will find the libraries in:

${ install_prefix }/ lib/

and the include files in:

${ install_prefix }/ include / dnscore /
${ install_prefix }/ include /dnsdb/
${ install_prefix }/ include /dnslg/

3.5 From Packages

3.5.1 RHEL/CentOS/Fedora

YADIFA source and binary packages are available from EPEL (Extra Packages for Enterprise
Linux), provided by Denis Fateyev. For the latest status, please check : Fedora Status Page

0 1 7

https://admin.fedoraproject.org/pkgdb/package/yadifa/

Preparation

For RHEL/CentOS, the EPEL repository is required. We would like to refer you to the proper
installation guide at https://fedoraproject.org/wiki/EPEL

Installation

Once the repositories are setup, installation can be completed using the following command:

shell

$> sudo yum install yadifa

3.5.2 Debian

Preparation

When using Debian STABLE, the package is in the official stable repository since Debian 9 ”Stretch”
and can be easily installed using the default package manager (See Installation).

Currently the version in Debian 9 is version 2.3.8, if a more recent version is desired, it can be built
manually.

shell

$> sudo apt -get install build - essential dh - autoreconf dh - systemd unzip curl
↪→ libssl -dev

$> curl -L https :// github .com/ asciiprod / yadifa / archive / master .zip -o master .
↪→ zip

$> unzip master .zip
$> curl https :// cdn. yadifa .eu/sites/ default /files/ releases /yadifa -2.4.0-9809.tar

↪→ .gz -o yadifa_2.4.0.orig.tar.gz
$> cd yadifa - master
$> dpkg - buildpackage -us -uc
$> cd -

The packages are now available as yadifa <mainver>-<revision> <architecture>.deb

0 1 8

Installation

From the official repository:

shell

$> sudo apt -get install yadifa

From the manual compilation:

shell

$> sudo groupadd yadifa
$> sudo dpkg -i yadifa_2.4.0-9809.deb

3.5.3 Ubuntu

Preparation

The package is available through the official [universe] repository since Xenial Xerus (16.04 LTS)

shell

$> sudo apt -get install yadifa

For older versions of Ubuntu, the package is not in the official repository and needs to be built
manually.

Please follow the debian build procedure.

3.5.4 Arch Linux

YADIFA is available from AUR (Arch User Repository), provided by BlackIkeEagle.

0 1 9

Preparation

You are encouraged to read aur.archlinux.org for a full description on how to use AUR (Arch User
Repository).

The package is available at Yadifa AUR

shell

$> curl https :// aur. archlinux .org/cgit/aur.git/ snapshot / yadifa .tar.gz -o
↪→ yadifa .tar.gz

$> tar zxvf yadifa .tar.gz
$> cd yadifa
$> makepkg

Installation

Once the repositories are setup, installation can be completed using the following command:

shell

$> sudo pacman -U yadifa -2.4.0-1-x86 64.pkg.tar.xz

Or when you have installed pacaur, the preparation step can be skipped.

shell

$> sudo pacaur -S yadifa

3.5.5 Gentoo

Currently there is no emerge package available for Gentoo.

Please follow the source install option.

3.5.6 FreeBSD

YADIFA is available from FreeBSD ports

0 2 0

https://aur.archlinux.org/packages/yadifa/

Installation

shell

$> cd /usr/ports/dns/ yadifa && make install clean

YADIFA is now installed in /usr/local

3.5.7 OpenBSD

OpenBSD is not supported as the OS is lacking required functionality.

3.5.8 Solaris

There are no packages available for Solaris.

Please follow the source install option.

3.5.9 Mac OS X

Currently there is no Mac OS X package available.

Please use the source install.

0 2 1

4
Server Configuration

YADIFA is an authoritative name server only. Currently it does not have the functionalities to be
a caching name server, a validating name server or a forwarder.

YADIFA can start up without prior configuration, and it just requires an empty configuration
file. Of course with an empty configuration file it does not do much, but you can test certain
functionalities. It will answer queries, but with no zones configured it will return a flag which
indicates that the query has been refused (REFUSED). This flag will be explained later in the
manual.

All logs will be will be sent to the standard output.

The YADIFA configuration file has thirteen sections:

Eight standard sections:

“main” section (see on page 82) (<main>)

“zone” section (see on page 87) (<zone>)

“key” section (see on page 90) (<key>)

“acl” section (see on page 91) (<acl>)

“channels” section (see on page 92) (<channels>)

“loggers” section (see on page 95) (<loggers>)

“nsid” section (see on page 98) (<nsid>)

“rrl” section (see on page 99) (<rrl>)

And five sections for DNSSEC-Policy (see on page 53) (DNSSEC-Policy) only:

“dnssec-policy” section (see on page 100) (<dnssec-policy>)

“key-suite” section (see on page 101) (<key-suite>)

0 2 2

“key-roll” section (see on page 101) (<key-roll>)

“key-template” section (see on page 102) (<key-template>)

“denial” section (see on page 103) (<denial>)

Each section has its own set of configuration elements.

<main> contains all the configuration parameters needed to start up YADIFA

<zone> contains all the configuration parameters needed for the zones

<channels> and <loggers> are needed to configure your log information

<key> contains TSIG[30] (TSIG) information

<nsid> contains the “DNS Name Server Identifier Option”

<rrl> contains the “Response Rate Limiting in the Domain Name System”.

<dnssec-policy> (see chapter 9).

The configuration file also supports the use of includes. Included configuration files can itself
contain include directives, with a maximum depth of 255. Relative path names will be treated as
relative from the path of the configuration file where the include directive was defined.

configuration

<some_section>
...

</some_section>

include "../relative/to_this_file/include.conf" # with or without quotes
include include.conf # same directory as the

current file

<other_section>
...

</other_section>

include /absolute/path/to/file.conf # absolute path

note

Included files are included in-line. This means the order is respected
and later sections and configuration options overwrite previously defined
options.

0 2 3

4.1 An authoritative name server

To allow YADIFA to answer queries for its domain names, you have to declare them to the zone
section.

4.1.1 Primary name server

An example of a zone with domain name somedomain.eu.

configuration example

<zone>
domain somedomain.eu
file masters/somedomain.eu.
type master

</zone

Where:

domain is the full qualified domain name

file is the absolute or relative path of the zone file in text format

type is the kind of name server YADIFA is for this zone. type can be:

– Master
– Slave.

In this example, YADIFA is configured as a master. This means that the original zone file is on
this server and you need to edit the zone file on this server.

note

For a working example you can find the zone file on page 105.

4.1.2 Secondary name server

YADIFA is authoritative for the zone somedomain.eu, but does not have the original information.
YADIFA needs to get the information from a master for this zone file.

0 2 4

configuration example

<zone>
domain somedomain.eu
file slaves/somedomain.eu.
type slave
master 192.2.0.1

</zone>

In this example the type changes to slave. YADIFA needs to know where it can find the master
zone file. This will be done with the additional configuration parameter master, where you can
specify the IP address of the master name server for this domain name.

4.2 Signals

On a unix-like operating systems you can send a signal to a process, this is done with the kill
command.

A few signals are implemented:

SIGTERM will shutdown YADIFA properly

SIGINT will shutdown YADIFA properly

SIGHUP will reopen the log files and reload all updated zone files from disk. 1

SIGUSR1 will save all zone files to disk. Zones files matching the zone in memory will not
be overwritten.

For example:

shell

$> ps -ax | grep yadifad
$> 67071 2 S+ 0:03.47 ./ yadifad
$> kill -HUP 67071

1only the zone files with a higher serial number on disk than in the database will be affected

0 2 5

5
Server Technical

For now there are three entry points to the database:

1. Zone File

2. AXFR and IXFR

3. Dynamic Updates in the Domain Name System[12] (DNS UPDATE).

All three use the same principles to accept a resource record:

First-come, first-served

Semantic errors will drop the relevant resource record

Syntax errors will drop the relevant entity.

Dropping the relevant entity can mean several things. If a syntax error occurs in a DNS UPDATE
just this packet will be dropped and not the relevant zone file. A syntactical error can be a typo,
but for security reasons the entity will be dropped completely.

If a syntax error is not a typo, but something against the RFCs, only that resource record will be
dropped.

5.1 Zone file reader

The zone file reader will check each resource record as a single entity. Inconsistencies are only
checked once the whole zone has been loaded.

What are inconsistencies?

Semantics of a resource record.

0 2 6

https://www.ietf.org/rfc.html

Non-existing MACROS/DIRECTIVES (eg.typos in MACROS/DIRECTIVES).

Multiple SOA records at the apex or an SOA record outside of the apex.

Forbidden CNAME [43] (CNAME) record(s) at the apex.

CNAME ’s alongside records of types other than RRSIG or NSEC .

No NS record found at the apex.

Delegation Signer[49] (DS) records without an NS record present.

DS records at the apex.

Unexpected records at a delegation.

Unexpected records under a delegation.

RRSIG records with an original Time to Live (TTL) not matching the covered type’s.

RRSIG records signed by an Domain Name System KEY[49] (DNSKEY) not present in the
zone.

RRSIG records covering a type not present in the domain.

RRSIG records covering RRSIG records.

RRSIG made with a Key Signing Key[49] (KSK) over a type other than DNSKEY .

5.1.1 Known types

For more information see section 15.3.

0 2 7

6 Client

YADIFA comes with one client:

1. yadifa

6.1 YADIFA

yadifa is the tool used to access the yadifad servers. yadifa can be used to configure a name server
and control a name server.

yadifa communicates with the name server over a Transmission Control Protocol[46] (TCP)
connection. This communication can be authenticated with TSIG’s. This TSIG can be given via
the command line or a configuration file.

Default there’s control support in YADIFA.

shell

$> ./ configure

If you dont want to have control support in YADIFA you need to disable this function before
compiling the sources.

shell

$> ./ configure --disable -ctrl

After the configure, you can do the normal make and make install.

0 2 8

shell

$> make
$> make install

0 2 9

note

For control support you need to add allow-control in the <main> of
yadifad.conf (14.3.1).

6.1.1 Control commands

For controling yadifad the client, yadifa, is needed with its control module. The commands available
in the control module can be seen with:

shell

$> yadifa ctrl help

TYPES DOMAIN NAME ARGUMENTS

cfgreload
freeze [<domain name>]
logreopen
notify [<domain name>]
querylog [disable | enable]
reload <domain name>
shutdown
sync <domain name> [clean]
unfreeze [<domain name>]
zonecfgreload <domain name>

COMMANDS

shell example

$> yadifa ctrl -s " 192.0.2.1 port 53" -t <commands > -q [< domain name >] [<
↪→ arguments >]

A more friendlier version of the commands can be used.

-s Can be reduced to @

-t Can be omitted in most cases

-q Can be omitted in most cases.

0 3 0

shell example friendlier version

$> yadifa ctrl @192 .0.2.1 <commands > [< domain name >] [<arguments >]

In all commands the verbose -v option can be used:

shell example friendlier version

$> yadifa ctrl -v @192 .0.2.1 <commands > [< domain name >] [<arguments >]

note

Where the non-verbose mode only gives back the exit code, you can have a
more elaborated view in verbose mode.

cfgreload

This command will reload all keys, and the zones configurations and the zones. The port can be
optionally supplied.

shell example

$> yadifa ctrl @192 .0.2.1 cfgreload

Gives as result in verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 48854
;; flags: qr; QUERY: 1, ANSWER : 0, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL CFGRELOAD

;; ANSWER SECTION :

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 3 msec

0 3 1

;; WHEN: Tue Jun 23 10:11:22 2020
;; MSG SIZE rcvd: 17

freeze

This command suspends updates to a zone. No further modifcations (DNS UPDATE) can be
made. This command has a counterpart: unfreeze.

shell example

$> yadifa ctrl @192 .0.2.1 freeze somedomain .eu

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 30001
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL FREEZE

;; ANSWER SECTION :
. 0 CTRL FREEZE somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:16:27 2020
;; MSG SIZE rcvd: 43

logreopen

This command reopens all log files.

shell example

$> yadifa ctrl @192 .0.2.1 logreopen

0 3 2

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 59456
;; flags: qr; QUERY: 1, ANSWER : 0, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL LOGREOPEN

;; ANSWER SECTION :

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 526 msec
;; WHEN: Tue Jun 23 10:18:03 2020
;; MSG SIZE rcvd: 17

loglevel

This command sets up the maximum level of log [0;15], 6 = INFO, 15 = ALL.

shell example

$> yadifa ctrl @192 .0.2.1 loglevel -l 15

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 41914
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL LOGLEVEL

;; ANSWER SECTION :
. 0 CTRL LOGLEVEL 0f

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

0 3 3

;; Query time: 1 msec
;; WHEN: Thu Jul 2 13:53:04 2020
;; MSG SIZE rcvd: 29

notify

This command tells the server to send a notification to all the slaves of a specific zone. If not name
is provided, it tells the server to send a notification all the slaves of all of its zones.

shell example

$> yadifa ctrl @192 .0.2.1 notify somedomain .eu

Gives as a result in the verbose mode:

shell output

(1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 28159
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL NOTIFY

;; ANSWER SECTION :
. 0 CTRL NOTIFY somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Fri Jun 26 15:35:46 2020
;; MSG SIZE rcvd: 43

querylog

This command enables or disables query logs.

0 3 4

shell example

$> yadifa ctrl @192 .0.2.1 querylog enable

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 38288
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL QUERYLOG

;; ANSWER SECTION :
. 0 CTRL QUERYLOG 01

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 2 msec
;; WHEN: Tue Jun 23 10:18:42 2020
;; MSG SIZE rcvd: 29

shell example

$> yadifa ctrl @192 .0.2.1 querylog disable

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 38290
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL QUERYLOG

;; ANSWER SECTION :
. 0 CTRL QUERYLOG 00

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

0 3 5

;; Query time: 2 msec
;; WHEN: Tue Jun 23 10:19:42 2020
;; MSG SIZE rcvd: 29

reload

This command reloads the zone file from disk. If no parameter is given, ’.’ will be used as domain
name.

shell example

$> yadifa ctrl @192 .0.2.1 reload somedomain .eu

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 8513
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL RELOAD

;; ANSWER SECTION :
. 0 CTRL RELOAD somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:23:12 2020
;; MSG SIZE rcvd: 43

shutdown

This command shuts down the server.

0 3 6

shell example

$> yadifa ctrl @192 .0.2.1 shutdown

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 28755
;; flags: qr ; QUERY: 1, ANSWER : 0, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL SHUTDOWN

;; ANSWER SECTION :

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:43:25 2020
;; MSG SIZE rcvd: 17

sync

This command writes the zone to disk and optionally removes the journal. If no zone is specified,
all zones are implied. The extra clean option will remove the journal.

shell example

$> yadifa ctrl @192 .0.2.1 sync somedomain .eu

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 36295
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL SYNC

0 3 7

;; ANSWER SECTION :
. 0 CTRL SYNC 00 somedomaineu .

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 2 msec
;; WHEN: Tue Jun 23 10:34:52 2020
;; MSG SIZE rcvd: 44

shell example

$> yadifa ctrl @192 .0.2.1 sync somedomain .eu clean

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 63520
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL SYNC

;; ANSWER SECTION :
. 0 CTRL SYNC 01 somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:33:08 2020
;; MSG SIZE rcvd: 44

unfreeze

This command enables updates to a zone. Modifications (DNS UPDATE) can be done again. This
command has a counterpart: freeze.

0 3 8

shell example

$> yadifa ctrl @192 .0.2.1 unfreeze somedomain .eu

Gives as a result in the verbose mode:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 6932
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL UNFREEZE

;; ANSWER SECTION :
. 0 CTRL UNFREEZE somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:35:43 2020
;; MSG SIZE rcvd: 43

zonecfgreload

This command rereads the zone config and reloads the zone file from disk.

shell

$> yadifa ctrl @192 .0.2.1 zonecfgreload somedomain .eu

Gives as a result:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 1853
;; flags: qr; QUERY: 1, ANSWER : 1, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL ZONECFGRELOAD

0 3 9

;; ANSWER SECTION :
. 0 CTRL ZONECFGRELOAD somedomain .eu.

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Jun 23 10:38:24 2020
;; MSG SIZE rcvd: 43

shell

$> yadifa ctrl @192 .0.2.1 zonecfgreload

Gives as a result:

shell output

; (1 server found)
;; Got answer :
;; ->>HEADER <<- opcode : CTRL , status : NOERROR , id: 14197
;; flags: qr; QUERY: 1, ANSWER : 0, AUTHORITY : 0, ADDITIONAL : 0
;; QUESTION SECTION :
;. CTRL ZONECFGRELOAD

;; ANSWER SECTION :

;; AUTHORITY SECTION :

;; ADDITIONAL SECTION :

;; Query time: 1 msec
;; WHEN: Tue Oct 6 11:02:55 2020
;; MSG SIZE rcvd: 17

0 4 0

7 Key roll

7.1 Introduction

On a typical DNSSEC setup, the master name server has access to both the KSK and the Zone
Signing Key[49] (ZSK) key pairs.
The private part of the KSK is only required when the ZSK is replaced.
To avoid leaving the KSK key pairs unnecessarily vulnerable, one would only need to generate the
KSK and ZSK in advance, as well as their associated RRSIG DNSSEC records.
This way, the master name server needs only access to the ZSK key pairs.

The yakeyrolld program generates a sequence of KSK and ZSK for a zone, with all the steps of
their lifecycles:

time of creation,

time of publication,

time of activation,

time of de-activation,

time of un-publication.

These times are determined using a cron-like schedule.

For all these steps, it computes the following:

the expected DNSSEC and RRSIG DNSSEC records on the master before the step is started,

the ZSK files to add,

the ZSK files to remove,

0 4 1

the DNSSEC and RRSIG DNSKEY records to add

the DNSKEY and RRSIG DNSKEY records to remove

the expected DNSKEY and RRSIG DNSKEY records on the dns master after the step has
been completed.

Each step is stored as a file. The file contains fields like:

PARAMETER DESCRIPTION

epochus An integer with the epoch of the step expressed in mi-
croseconds.

dateus A user-friendly date text matching the epochus field.
actions a list of actions expected to happen on the step (infor-

mational)
debug A text meant to help understand the step (informational)
update Each entry is a dynamic update command to be sent to

the server.
expect Each entry defines one record expected to be in the zone

on the server prior to executing the current step.
endresult Each entry defines one record expected to be in the zone

on the server after the step has been executed.
add Defines a key file to create in keys-path.
del Names a key file to delete from keys-path.

TIME VALUES

Once this initialization is complete, yakeyrolld executes each step at their defined time: files are
created or deleted, records are updated on the master dns server using the dynamic update protocol.
If the dns master server’s record do not match the expectations, yakeyrolld will take measures to
simply replace the ZSK files, the DNSKEY and RRSIG DNSKEY records on the DNS master
server completely with the expected ones.

7.2 Configuration

yakeyrolld requires a configuration file. By default it is ${sysconfigdir}/yakeyrolld.conf ; however
it can be changed using the -c command line option.

The sections of the configuration file are:

yakeyrolld,

key,

0 4 2

channels,

loggers,

dnssec-policy,

key-suite,

key-template,

key-roll.

The main section is specific to yakeyrolld, all the others sections are defined exactly as in yadifad
(see their description in the DNSSEC Policies chapter). The exception is there is no denial option
in the dnssec-policy section as there is denial section either.

PARAMETER TYPE DEFAULT DESCRIPTION

domain FQDN . Names one domain to manage, can be
used up to 200 times.

log-path PATH ${localstatedir}/zones/keys The directory that will contain the
log files.

keys-path PATH undefined The directory the name server uses to
read zone key file.

plan-path PATH ${localstatedir}/zones The directory of the step files.
pid-path PATH ${localstatedir}/run The directory of the pid file.
pid-file STRING yakeyrolld.pid The name of the pid file.
generate-from STRING “now” For plan generation, when to start

the plan, can be overridden by the
command line.

generate-until STRING “+1y” For plan generation, when to stop the
plan, can be overridden by the com-
mand line.

server HOST 127.0.0.1 The address of the name server for
queries and dynamic updates.

timeout INT 3 The number of seconds spent trying
to communicate with the master until
it’s considered a time-out.

ttl INT 600 The default TTL value to use when
generating records.

policy STRING undefined The name of the policy to use when
generating the plan.

uid UID 0 The uid to swich to. This should
match the name server’s.

gid GID 0 The gid to swich to. This should
match the name server’s.

YAKEYROLLD SECTION

0 4 3

7.3 Generate time format

The generate-from and generate-until time string is able to parse several kind of values:

PARAMETER DESCRIPTION

now Right now.
tomorrow In 86400 seconds.
yesterday 86400 seconds ago.
+INTEGERunit A number of time units after right now.
-INTEGERunit A number of time units before right now.
YYYY-MM-DD The absolute date at midnight.
YYYYMMDD The absolute date at midnight.
YYYY-MM-
DD HH:MM:SS.UUUUUU

The absolute date and time to the microsecond.

YYYYMMDDHHMMSSUUUUUU The absolute date and time to the microsecond.
TIME VALUES

Time units can be: years (366 days), months (31 days), weeks, days or seconds.
yakeyrolld determines time units by matching the first letters: “s“, “sec“, “second“, “seconds“ are
equally supported.

Examples:

configuration

now
tomorrow
+1y
+1year
+2years
+1m
+1month
+2months
-1y
-1year
-1years
2019-04-16
2019-04-16_12:00:00.123456
20190416
20190416120000123456

0 4 4

7.3.1 Command line

short long description

-c --config configfile sets the configuration file to use
-m --mode mode sets the program mode

(generate,play,playloop,print,print-json)
-d --domain fqdn the domain name
-p --path directory the directory where to store the keys
-s --server address the address of the server
-t --ttl seconds the TTL to use for both DNSKEY and RRSIG records

--explain prints the planned schedule
--reset start by removing all the keys and create a new KSK and

a new ZSK . The server will not be queried.
--policy name of the policy to use
--from time the lower time bound covered by the plan (now)
--until time the upper time bound covered by the plan (+1y)
--dryrun do not write files to disk, do not send updates to the

server
--wait wait for yadifad to answer before starting to work (de-

fault)
--nowait do not wait for yadifad to answer before starting to work
--daemon daemonise the program for supported modes (default)
--nodaemon do not daemonise the program

-Y --noconfirmation do not ask for confirmation before doing a data reset
-h --help shows the help
-V --version prints the version of the software

TIME VALUES

Any parameter given using the command line overrides the value it has in the configuration file.

7.3.2 Master name server side setup

Every zone whose keys are managed by yakeyrolld must be configured on the name server.

RRSIG records dynamic updates must be allowed (rrsig-nsupdate-allowed yes)

updates coming from yakeyrolld must be allowed

DNSSEC key files of the zone should be moved or removed as they may interfere with yakey-
rolld

the zone file must be setup for the same DNSSEC mode configured in yakeyrolld (e.g.: NSEC ,
NSEC3 , NSEC3-OPTOUT [4] (NSEC3-OPTOUT))

0 4 5

7.3.3 yakeyrolld first sequence

To generate the first sequence, one needs only to give the covered time period and specify to ignore
the current content of the zone in the server (–reset).

e.g.:

shell

$> yakeyrolld -m generate --until +2y --reset

This command will generate all the steps required from that point in time and for a period of
two years. The first update of the sequence will replace all the keys of the zone. The step files
will be stored in the plan-path/domain directory. The KSK private keys will be stored in the
plan-path/domain. SECRET KEYSIGNINGKEY directory.

7.3.4 yakeyrolld runtime usage

Once the step files have been generated, yakeyrolld can be started to execute them to make the
zone on the server match the step active at the time of the command.

Simply executing the steps can be done using the play command.

e.g.:

shell

$> yakeyrolld -m play

yakeyrolld can be asked to play the sequence to the end, executing each step on time, by using the
playloop command instead.

shell

$> yakeyrolld -m playloop

0 4 6

7.3.5 Extend the time covered by the steps

In order to add additional keys, simply call the generation with the appropriate duration and omit
the –reset parameter.

shell

$> yakeyrolld -m generate --until +3y

yakeyrolld will add the missing steps to cover the time period and modify the existing ones if
needed.

Note that yakeyrolld only loads the steps when starting up: any change made to the sequence
requires restarting the program.

configuration

#
Example yakeyrolld configuration file.
#

<yakeyrolld>
domain "example.eu"

log-path "/opt/yakeyrolld/var/log/yakeyrolld"
keys-path "/opt/yadifa/var/zones/keys"

plan-path "/opt/yakeyrolld/var/zones"

generate-from "now"

generate-until "+1y"

server 127.0.0.1

policy "master-policy"
</yakeyrolld>

<key>
name master-slave
algorithm hmac-md5
secret MasterAndSlavesTSIGKey==

</key>

<channels>
dnssec dnssec.log 0644
system system.log 0644
keyroll keyroll.log 0644
all all.log 0644

</channels>

0 4 7

<loggers>
system prod system
dnssec prod,all dnssec
keyroll prod,all keyroll,all

</loggers>

<dnssec-policy>

name of the ’dnssec-policy’
id "master-policy"
description "master zone policy"

at least one: key-descriptor "name"
they define KSK & ZSK keys

key-suite "zsk-2048"
key-suite "ksk-2048"

</dnssec-policy>

<key-suite>
name of the key-suite
id "zsk-2048"
key-template "zsk-rsa-sha256-2048"
optional, without it, the keys found in the storage are used
key-roll "monthly-calendar"

</key-suite>

<key-suite>
name of the key-suite
id "ksk-2048"
key-template "ksk-rsa-sha256-2048"
optional, without it, the keys found in the storage are used
key-roll "yearly-calendar"

</key-suite>

<key-template>
id "zsk-rsa-sha256-2048"
algorithm RSASHA256
size 2048

</key-template>

<key-template>
id "ksk-rsa-sha256-2048"
ksk 1
algorithm RSASHA256
size 2048

</key-template>

min hours days months weekdays weeks

<key-roll>
id "yearly-calendar"

generate 11 10 * 1 mon 1 # this year (2018) 15/06 at 00:05
publish 11 10 * 1 tue * # 00:10
activate 11 10 * 1 wed * # 16/06 at 00:15

0 4 8

inactive 11 10 * 1 mon * # (2019) 17/06 at 00:15
remove 11 10 * 1 wed * # (2019) 18/06 at 11:15

</key-roll>

<key-roll>
id "monthly-calendar"

generate 17 10 * * mon 0 # 1 Monday of month at 10:17
publish 17 10 * * tue * # 1 Tuesday of month at 10:17
activate 17 10 * * wed * # 1 Wednesday of month at 10:17
inactive 17 10 * * wed * # 1 Wednesday of month at 10:17
remove 17 10 * * thu * # 1 Thursday of month at 10:17

</key-roll>

0 4 9

8 Domain Name System Security
Extensions (DNSSEC)

8.1 Introduction

The DNS provides responses without validating their source. This means that it is vulnerable to
the insertion of invalid or malicious information, a flaw discovered by Dan Kaminsky in 2008.

This technical report documents the various components of the long-term solution to this kind of
cache-poisoning attack: DNSSEC .

8.2 DNSSEC overview

In a nutshell, DNSSEC adds signatures to regular DNS responses in the form of RRSIG. A
signature covers a resource record set. A resource record set properly signed by a trusted source
can be accepted as valid. Many signatures can cover the same resource record set.

The RRSIG RR is consistent in a hash1 of the covered resource record set along with the validity
period and other relevant information, signed with the private part of the owner’s key pair 2.

To be able to verify whether the response is legitimate, the receiver of a signed response should
verify that each resource record set is verified by at least one of the signatures that covers it.

If this comparison shows no differences, the receiver is sure of two things:

Integrity - the response has not been modified

Authenticity - the response comes from the expected source
(the only one to possess the private part of the key pair).

1A hash of a sequence of characters is the result of a one-way transformation of that sequence into a much smaller,
fixed-length sequence by applying a certain mathematical formula. The slightest change of the original sequence
changes the resulting hash. Thus, after transmission of the characters, one can detect changes to a sequence by
comparing its current hash with the original.

2Public/private key encryption is well-known. A message is signed with the private part of a key pair (kept secret).
The resulting signed message can only be verified using the public part of the key pair (shared with everybody).

0 5 0

Note that the response itself is not encrypted. DNSSEC adds RRSIG records to responses, but
the records that hold the data remain unaltered. In this way, DNSSEC is backwards compatible as
non-DNSSEC -aware name servers can and should ignore unknown data and continue to function
as expected.

The challenge in this scenario is to get the public part of the key pair to the users who need it for
verification in a secure way.

The public parts of key pairs are available via the DNS as they are published as DNSKEY resource
records. When querying for DNSKEY records, the response to a query also holds a signature for
the DNSKEY record. But the question remains, should the receiver simply accept that the data
is authentic and use it?

The answer is no. To verify the signature of a DNSKEY record, the user must consult the parent
of the domain name. For domain names, such as eurid.eu, the parent is the Top Level Domain
Name (TLD). For a TLD, the parent is the root domain. To enable users to obtain the public part
of a signed domain name in a secure way, a hash of the public key is put in the parent zone as a
DS resource record.

The parent zone signs the DS RR with its keys, authentifying the delegation in the process. In the
case of eurid.eu, a hash of the public key (DS) is put in the .EU TLD (.eu) zone where it is signed
with the private key of .eu. For the .eu zone itself, a hash of the .eu public key (DS) is put in the
root zone, where it is signed with the private key of the root zone.

This means that the receiver can obtain the public part of a key pair by querying for its hash in
the parent zone, and, verify its signature with the public part of that parent-zone’s key pair. This
process only takes us up one level in the DNS hierarchy.

There the question repeats itself: how can the receiver trust the signature from that parent zone
file? The answer lies in applying the same procedure: retrieving the public part of its key, the hash
from its parent and the hash’s signature.

But ultimately, some trust must be built in.

Herein lies the importance of having a signed Internet root zone, because receivers that verify signa-
tures only need to trust the public key of the root zone. This is the only public key necessary and it
can be obtained outside the DNS . It is available for download in several different formats together
with a signature file at: https://data.iana.org/root-anchors/. Before the . ZONE (.root zone)
was signed on 15 July 2010, administrators had to manually configure and maintain public key
information from different branches in the DNS tree.

Now that the root zone is signed, one can imagine how much effort TLD operators are putting into
enabling DNSSEC on the domains they serve. Only a complete chain of trust allows the secure
authentification of a domain name.

0 5 1

https://data.iana.org/root-anchors/

8.3 Types of key pairs

Two types of keys are used in DNSSEC :

The KSK - used only to sign the hash of DNSKEY information

The ZSK - used to sign the hashes of all RRs (A[43] (A), NS , MX [43] (MX), etc).

The more signatures generated with a particular key pair, the greater the chance of a successful
crypto-attack, in other words deducing the private part of a key pair by using the public part and
the available signatures. To prevent the signing of false information, key pairs should not be used
indefinitely. Every so often, new key pairs should be generated and used to resign the zone. The
frequency of key generation depends on the strength of the algorithm, key length and how often a
key is used.

Because strong algorithms and long keys require more resources, such as more CPU, the practice
is to use a weaker key pair, the ZSK , for all signatures but to change it regularly. Validity of these
signatures should be three to six months at most. A stronger key pair, the KSK , is only used to
sign the public key information. The KSK is changed less frequently, every one to two years. Only
a hash of the KSK appears in the root zone (as the DS RR). Since this key is changed, or rolled
over, less often, interaction with the parent is less frequent.

8.4 Algorithms

Several algorithms for calculating hashes and signatures have been defined. Specific name server
implementations or versions may not support all of the algorithms mentioned in the following
summary:

RSASHA1[2] (RSA/SHA1 Algorithm number 5) is declared mandatory by RFC 4034[49]. RSASHA1-
NSEC3 - SHA1 (algorithm number 7) is defined by RFC 5155[11]. It is essentially the same al-
gorithm as RSA/SHA1 Algorithm number 5 , although the Next SECure records are NSEC3 . The
stronger algorithms, RSASHA256[34] (RSA/SHA256 Algorithm number 8) and RSASHA512[34]
(RSA/SHA512 Algorithm number 10) are both defined by RFC 5702[34].

The use of these latter algorithms is recommended, as attacks against SHA1[31] (Secure Hash Algorithm 1)
(used in algorithms 5 and 7) are increasing. Bear in mind that the newer algorithms, numbers 8
and 10, may not be available in older DNS server implementations and, as verifying DNS name
servers that do not recognise an algorithm will treat the data as unsigned. It is unclear at the time
of writing whether end users will actually benefit from these stronger algorithms.

0 5 2

9
DNSSEC Policies

9.1 Introduction

The DNS infractructure is an integral and critical part of the Internet. With that said, the intro-
duction of DNSSEC did not make life easier for the hostmaster. Generation of KSK ’s and ZSK ’s,
in addition to signing the zone using “salt” and its iterations cause further complexity. To ensure
that the keys will not be compromised, new keys must be generated continuously, at regular inter-
vals, in a process called a “key roll over”. When a key-roll over occurs, it is critical to not lose the
integrity of the zone information. At no moment in time is it acceptable to have the zone unsigned
or the keys, KSK and ZSK , outdated.

Due to these complex manipulations, especially on large amounts of zones in a portfolio, there
is a need for an overall mechanism to facilitate DNSSEC enabled zones. Thanks to DNSSEC-
policies the administrative overhead and complexity for DNSSEC enabled zones can be reduced
significantly by generating and activating the keys automatically and maintaining the validity of
the signatures.

9.2 What is needed for DNSSEC?

To implement DNSSEC , the following items are required:

Keys for signing

A signed zone

A delegated zone

9.2.1 Keys for signing

In DNSSEC , there are two different types of keys for signing the zone. The KSK and ZSK . The
only difference in both keys is the use.

0 5 3

The KSK is used to sign the DNSKEY resource record set only and has the Secure Entry Point[49]
(SEP) bit set. The ZSK is used to sign each resource record set of the zone. It is recommended
to use a KSK in addition to a ZSK . The keysize KSK should be larger, resulting in stronger
cryptography and therefore can be rolled-over less often.

Each key consists of two parts: one private the other public.

Private Key

This key is used for signing all the resource record sets. The signatures are stored in the RRSIG
records and are only valid for a limited amount of time.

The current, most common format used to store a private key is depicted below:

Private-key-format: v1.3
Algorithm: 8 (RSASHA256)
Modulus: ...
PublicExponent: AQAB
PrivateExponent: ...
Prime1: ...
Prime2: ...
Exponent1: ...
Exponent2: ...
Coefficient: ...
Created: <create-date>
Publish: <publish-date>
Activate: <activate-date>
Inactive: <inactive-date>
Delete: <delete-date>

The fields; Created, Publish, Activate, Inactivate and Delete; indicate when the key must be used
and when it must be removed from the zone.

Created: Date the key was created.

Publish: Date the public part of the key is published in the zone.

Activate: Date the key should start signing the resource record sets.

Inactivate: Date the key should stop signing the resource record sets.

Delete: Date the public part of the key is removed from the zone.

0 5 4

Public Key

The public (part of the) key is used to verify the signatures generated by the private (part of the)
key. The public key is published in the zone as the DNSKEY . The only difference between the
KSK and ZSK is the presence of the SEP bit, resulting in 257 flags for KSK instead of 256 for a
ZSK .

somedomain.eu. IN DNSKEY 257 3 8 AwE...

DS

The DS record is the cryptographic glue between the parent and delegated zone. This record needs
to be published in the parent zone and needs to correspond with DNSKEY in the delegated zone.

somedomain.eu. 86400 IN DS <keytag> 8 2 <hash_of_key>

9.2.2 Signed zone

A zone is signed when all the resource record sets are signed by a valid ZSK . To be valid, the ZSK
itself needs to be published as a DNSKEY record and is to be signed by a KSK , which itself must
also be published as a DNSKEY . The KSK must have a corresponding DS record in the parent
zone and must in turn be signed by the parent’s ZSK .

Depending on your preferences and/or requirements, a choice between NSEC and NSEC3 must be
made to prove the Denial of Existence.

Signatures

Signatures are generated by the private key and stored in the zone as RRSIG records.

somedomain.eu. 86400 IN RRSIG <type_covered> 8 2 86400 (
<end_date> <begin_date> <key_tag> <signer>
<signature>)

0 5 5

Denial of Existence

DNSSEC requires a cryptographic proof of non-existence. The zone is sorted by the labels and
NSEC or NSEC3 records are generated representing the gaps between two subsequent labels. When
a non-existing record is requested, the NSEC or NSEC3 record is returned in between the requested
record should have been found. The NSEC or NSEC3 resource records are signed by an RRSIG.

For NSEC , the non-existence of somedomain.eu would result in a reply similar to:

eu. 7200 IN NSEC 0.eu. NS SOA TXT RRSIG NSEC DNSKEY
somedicprod.eu. 7200 IN NSEC somedreams.eu. NS RRSIG NSEC

When using NSEC3 , the mechanism is similar to NSEC , but all the records are hashed before
being sorted. The hashing algorithm, the salt and the number of times it should be hashed are
stored in an NSEC3PARAM[11] (NSEC3PARAM) record and are copied in each NSEC3 resource
record. In NSEC3 there is an option to enable the Opt-Out[4] (Opt-Out). When this flag is set,
only the zones for which there is a secure delegation will be considered for generating the NSEC3
records. Non-secure delegations will be treated as non-existent and will reduce the number of
NSEC3 records being created significantly.

QBQ65Q6097OCPPR0EUCQNSC1FHE073UA.eu. 600 IN NSEC3 1 1 1 5CA1AB1E (
QBQ6OCGMT2JNIJ4JNF2CCRFI4CE4NUE0
NS SOA RRSIG DNSKEY NSEC3PARAM)

BKP4A7B3B0FKDVMPFABNCJ046PB2911A.eu. 600 IN NSEC3 1 1 1 5CA1AB1E (
BKPDVHUHA3S2PVTPI58DP5I5SABJUIM4
NS DS RRSIG)

4EIAT7URLC7FMN9AGIJ231E2S7L62TGO.eu. 600 IN NSEC3 1 1 1 5CA1AB1E (
4EIOQGMMDB0BP76VHHBDNVEN2UUNABGK
NS DS RRSIG)

9.2.3 Delegated zone

For DNSSEC to work, the whole chain up to the root must support DNSSEC . If the parent zone
does not support DNSSEC , the chain cannot be verified and will not work.

9.3 What is needed for yadifa?

As there are a number of parameters to define, the components of DNSSEC policies span the
following sections:

0 5 6

<zone>

<dnssec-policy>

<denial>

<key-suite>

<key-template>

<key-roll>

9.3.1 Zone

Any zone can be handled by DNSSEC policies.

If a zone is activated to handle DNSSEC by DNSSEC-policy, the keyword dnssec-policy with an
associated id must be added.

configuration example of <zone> with dnssec-policy

<zone>
domain somedomain.eu
file masters/somedomain.eu.
type master

dnssec-policy "dp-1"
</zone>

9.3.2 DNSSEC-Policy

A DNSSEC-Policy configured zone needs <dnssec-policy> which has several keywords:

id

denial

key-suite

configuration example of <dnssec-policy> with NSEC3

<dnssec-policy>
name of the ’dnssec-policy’
id "dp-1"

0 5 7

denial "nsec3-denial"

at least one: key-descriptor "name"
they define KSK & ZSK keys

key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

At least one <key-suite> must be configured. It is also recommended to have one KSK and one
ZSK . YADIFA will only read the first four key-suites.

The argument of key-suite is a string that must be unique per section type. It is possible, however,
to configure several different sections with the same name (id). For example, in one configuration
it is possible to have a <denial> and a <key-suite> with the same “id”.

If <dnssec-policy> contains two or more key-suites that contain the same content, only one
<key-suite> will be applied.

Please note that the same algorithm should be used for both key signing and zone signing. This
means for example that if you use KSK key-suite using the RSA/SHA256 Algorithm number 8
algorithm, you also need a ZSK key-suite using the RSA/SHA256 Algorithm number 8 algorithm.

note

Clarifying the same content:

If two <key-suite> have the same definition about keys in addition to the
same time schedule regardless of their names (ids), only one will be applied
while the other is silently ignored.

9.3.3 Denial

The <denial> section contains several keywords:

id

salt1

salt-length1

iterations
1mutually exclusive, if both are defined, the system will refuse to start due to a parsing error

0 5 8

optout

The zone can be signed with NSEC or NSEC3 . If NSEC3 has been chosen, salt will still need to
be used for the NSEC3PARAM and the amount of iterations of this salt. In addition, the digest
algorithm is also needed and is fixed to Secure Hash Algorithm 1 . This cannot be changed.

The choice between NSEC or NSEC3 is done in the <dnssec-policy>.

Here are two examples:

An example with the use of NSEC

configuration example of <dnssec-policy> with NSEC

<dnssec-policy>
id "dp-1"

denial "nsec"
...
...

</dnssec-policy>

An example with the use of NSEC3

configuration example of <dnssec-policy> with NSEC3

<dnssec-policy>
id "dp-2"

denial "nsec3"
...
...

</dnssec-policy>

With the latter, “dp-2”, there is still a need for <denial>. In <denial> you need to add a
”salt” which can be blank. The algorithm used for the hashing of the NSEC3 RR is always
Secure Hash Algorithm 1 and cannot be changed. The parameters that can be set are: “iterations”,
which is the amount of iteration done; the salt which can be set with the mutually exclusive: “salt”
or “salt-length”; and “optout” to enable or disable the opt-out feature of NSEC3 . When the
opt-out feature is enabled, RRSIGs for insecure delegations are not generated, resulting in smaller
zones while maintaining the security for secure delegations.

salt is used as keyword with argument a string. This string is BASE16 [35] (BASE16) and is the
actual salt. The keyword salt-length will generate a random string with the length provided as
argument.

0 5 9

configuration example of <denial> with keyword salt

<denial>
id "nsec3"

salt "BA53BA11"
salt-length 4

iterations 5
optout off

</denial>

note

Default value of salt-length’s arguments is ‘‘0’’. There is no salt if
salt-length is ‘‘0’’.

9.3.4 Key Suite

A zone file can have several keys.

Preferably a zone file is configured with two keys:

KSK

ZSK

Configuration of the key is done in <key-suite>. The section has three keywords:

id

key-template

key-roll.

key-template has the definition of the key and key-roll is the time schedule of the key.

configuration example of <key-suite>

<key-suite>
id "ksk-2048"

key-template "ksk-2048"
key-roll "yearly-schedule"

0 6 0

</key-suite>

note

A zone with only a ZSK is acceptable, but a zone with only a KSK is not.

9.3.5 Key Template

There are two kinds of keys:

KSK
configuration example of <key-template> with a KSK

<key-template>
id "ksk-2048"

ksk true
algorithm 8
size 2048

</key-template>

ZSK .
configuration example of <key-template> with a ZSK

<key-template>
id "zsk-1024"

ksk false
algorithm 8
size 1024

</key-template>

The arguments of algorithm and size keywords are referenced in the configuration reference
chapter (14.3.12).

0 6 1

note

The key-suite is configured in <dnssec-policy>.

configuration example with of <dnssec-policy> with NSEC3

<dnssec-policy>
id "dp-2"
denial "nsec3-denial"
key-suite "ksk-2048"

</dnssec-policy>

9.3.6 Key-roll

A DNSSEC key has a life-span. It starts with creating (generating) the key and ends with removing
the key from the zone file.

A time schedule has several phases:

Generate a key

Publish a key in a zone

Activate a key

Inactive a key

Remove a key from the zone

The mechanism for changing one key with another is called a key-roll over. Key-roll overs follow
the time schedule of a key. There are two kinds of “key-roll” mechanism:

Relative

Diary

0 6 2

Key-roll mechanism “relative” style

configuration example of <key-roll> with relative mechanism

<key-roll>
id "monthly-schedule"

create +30d
publish +2h
activate +7200 # 2 hours (in seconds)
inactive +31d
delete +7d

</key-roll>

The <key-roll> with the relative mechanism has an id and time phases.

The time phase keywords are:

create

publish

activate

inactive

delete.

One time phase has a keyword with 2 arguments. The first argument is a time period with a
resolution in seconds. The second argument is the dependency of a time phase with a previous one.

For example, publish will be done 2 hours after the generate time phase. The activate time phase
will be done another 2 hours later after the publish time phase.

note

The first argument always starts with a plus-sign.

note

The resolution of key rolls are in minutes. The seconds will be rounded up
to the minute.

If the second argument is not given default values will be used. (see section 14.3.11)

0 6 3

Key-roll mechanism “diary” style

configuration example of <key-roll> with diary mechanism

<key-roll>
id "yearly-schedule"

generate 5 0 15 6 *
↪→ * # this year (2018) 15/06 at 00:05
publish 10 0 15 6 *
↪→ * # 00:10
activate 15 0 16 6 *
↪→ * # 16/06 at 00:15
inactive 15 0 17 6 *
↪→ * # (2019) 17/06 at 00:15
remove 15 11 18 6 *
↪→ * # (2019) 18/06 at 11:15

</key-roll>

The <key-roll> with the diary mechanism has an id and time phases.

These “time phases keywords” are the same as those in the relative mechanism.

One time phase has one keyword with 6 arguments. The first argument is the minutes of the hour,
the second is the hours of the day. The third argument is the day of the week, and the fourth is
the month of the year. The fifth argument can be used to specify a day in a week (e.g. Wed for
Wednesday). The last argument is the week number in the month.

note

A mix of relative mechanism and diary mechanism styles in one <key-roll> is
not allowed.

See section 14.3.11 for further explaination.

0 6 4

10 DNS Name Server Identifier
(NSID)

10.1 Introduction

The DNS infrastructure is an integral and critical part of the Internet and the robustness of this
system has constantly been improved since it was first used. The increased robustness has lead to
more complex setups where mechanisms like DNS anycast, name server pools and IP failovers allow
different name servers to be available from a single IP address. These complex setups can make it
very difficult to identify individual name servers. To identify different name servers, one could query
for a specific record which is unique to each of the name servers. However, this method will not work
for generic queries which comprise the bulk of all requests. DNS Name Server Identifier[8] (NSID)
provides a solution by including a unique identifier within any DNS response. This feature is an
extension of the DNS protocol. To allow backward compatibility, a name server that has the NSID
extension will only send an NSID when it is explicitly asked for. The information, in response to
the NSID option in the query, can be found in the EDNS OPT pseudo-RR in the response.

10.2 NSID payload

The NSID is a sequence of up to 512 arbitrary bytes set by the administrator. When queried, the
byte sequence is usually represented as an hexadecimal string followed by its corresponding ASCII
chars, if possible.

The syntax and semantics of the content of the NSID option are deliberately left outside the scope
of this specification.

Examples of NSID:

It could be the “real” name of the specific name server within the name server pool.

It could be the “real” IP address (IPv4 or IPv6) of the name server within the name server
pool

It could be a pseudo-random number generated in a predictable fashion somehow using the
server’s IP address or name as a seed value

0 6 5

It could be a probabilistically unique identifier initially derived from a random number gen-
erator then preserved across reboots of the name server

It could be a dynamically generated identifier so that only the name server operator could
tell whether or not any two queries had been answered by the same server

It could be a blob of signed data, with a corresponding key which might (or might not) be
available via DNS lookups.

0 6 6

11 DNS Response Rate Limiting
(RRL)

11.1 Introduction

A typical Distributed Denial of Service (DDoS) attack relies on a great number of hosts to send
many requests simultaneously to disrupt a service. DNS is at the core of the Internet and when
this service is disrupted, many other services are disrupted as well as collateral damage. Therefore
many DNS service providers have made major investments in good connectivity to mitigate attacks
directed at their infrastructure. A DNS amplification attack is a special form of DDoS which takes
advantage of the stateless nature of DNS queries to create forged DNS requests. Answers to
these requests are sent to the actual target of the attack. The DNS protocol has been designed
with efficiency in mind. Therefore a typical request requires a minimal amount of bandwidth to
the name server, but can trigger a huge response which is typically many times larger than the
original request. These huge responses allow attackers to hedge their disposable bandwidth with
the bandwidth available at some DNS servers by making them unwilling participants in this special
form of DDoS.

11.2 What is it?

The DNS Response Rate Limiting (RRL) is an algorithm that helps mitigating DNS amplification
attacks. The name servers have no way of knowing whether any particular DNS query is real or
malicious, but it can detect patterns and clusters of queries when they are abused at high volumes
and can so reduce the rate at which name servers respond to high volumes of malicious queries.

11.3 The problem

Any internet protocol based on User Datagram Protocol[45] (UDP) is suitable for use in a
Denial of Service (DoS) attack, but DNS is especially well suited for such malevolence. There are
several reasons:

Reflected/Spoofed attack DNS servers cannot tell by examining a particular packet wether
the source address in that packet is real or not. Most DNS queries are done by UDP. UDP

0 6 7

does not have source address verification.

Small DNS queries can generate large responses Especially when used with DNSSEC , the
responses can be 10-20 (or more) times larger than the question.

11.4 A solution

If one packet with a forged source address arrives at a DNS server, there is no way for the server to
tell it is forged. If hundreds of packets per second arrive with very similar source addresses asking
for similar or identical information, there is a very high probability that those packets, as a group,
form part of an attack. The RRL algorithm has two parts. It detects patterns in incoming queries,
and when it finds a pattern that suggests abuse, it can reduce the rate at which replies are sent.

Clients are grouped by their masked IPs, using ipv4-prefix-length and ipv6-prefix-length.

Clients are kept in a table with a size varying from min-table-size to max-table-size.

The responses-per-second is the maximum number of “no-error” answers that will be given
to a client in the duration of a second.

The errors-per-second is the maximum number of error answers that will be given to a
client in the duration of a second.

The window is the period for which the rates are measured. If the client goes beyond any
of its allowed rates, then the majority of further answers will be dropped until this period of
time has elapsed. Every slip dropped answers, a truncated answer may randomly be given,
llowing the client to ask the query again using TCP.

0 6 8

12 RRSIG Update Allowed

12.1 Introduction

In a normal DNSSEC operation, the primary name server has a KSK and ZSK defined. The ZSK
is used to sign the zone. To reduce the size and work to generate the RRSIG, the ZSK is usually
a lot smaller than the KSK . To mitigate this problem, the ZSK is rolled (or replaced) much more
often than the KSK .

The KSK is only used to sign the DNSKEY resource record set (RR set) and is usually only rolled
once a year or even less frequently.

12.2 The problem

To sign a RR set and generate an RRSIG, the primary name server needs to have access to the
private key of the KSK and ZSK . If the ZSK is compromised due to e.g. a break-in, it can be
easily replaced by expiditing the keyroll for the ZSK . Unfortunately if the primary name server is
compromised, it is very likely that the KSK has also been compromised. The procedure to roll the
KSK is a bit more cumbersome and involves making changes in the parent zone by updating the
DS.

There are methods that the primary name server does not have access to the KSK and even the
ZSK , but these options are often very expensive, slow, a hassle to set up properly and integrate
within the existing infrastructure.

12.3 A solution

When an DNS UPDATE is sent to the primary name server, the RRSIG for the affected RR sets
needs to be (re-)calculated. For this the private key needs to be available.

YADIFA can be configured to accept the RRSIG along with the nsupdate to the primary name
server, eliminating the need to have access to the private key. The RRSIGs can then be computed

0 6 9

on a different server.

The intended use for this option is to remove the need to have access to the KSK private key. The
KSK is only required when there is a keyroll, which is only once a month or even less frequently.

Several ZSK keys can be pre-generated with the appropriate RRSIGs. Once done, the KSK can
be taken off-line. At the appropriate times, the pre-generated DNSKEY updates and RRSIGs can
be sent to the primary name server.

0 7 0

13
Multi Master

13.1 Introduction

A multi-master DNS server configuration is a setup where more than one primary name server
exists for the same zone and a secondary name server is configured to communicate with multiple
primary name servers.

The benefit of having a multi-master configuration is that if one of the primary name servers is
down or is in a maintainance mode the secondary name server can still request updates.

The secondary name server will listen to the notifications from all the primary name servers, but
will always request the updates from the same preferred primary name server. When the preferred
name server is unable to provide correct services, the next primary name server in the list of
primary name servers (masters) will be used. From then on, this primary name server has the
highest priority in the list and becomes the new preferred primary name server.

13.1.1 Design

Wheterh a slave is configured with a single master or with multiple masters, the design remains
similar. The differences for the multi-master design will be highlighted in this section of the manual.

Single master

When a slave zone has a single master configured, YADIFA will check the SOA serial on disk
and request an IXFR from this serial to the (only) primary name server. If no files exist on
disk, YADIFA will initiate an AXFR. When the transfer is successful, the zone is loaded. When
notifications are received from the master, it will check the serial in the notification and when the
serial is absent or higher, YADIFA will initiate an IXFR with the current serial to the master.

When a transfer error occurs, YADIFA will try to contact the primary name server again after a
delay. The backing-off mechanism is explained in a different section.

0 7 1

configuration example

<zone>
domain somedomain.eu
file slaves/somedomain.eu.
type slave
masters 192.0.2.1

</zone>

Multiple masters

When a slave zone has multiple masters configured, YADIFA will use the first configured master
as the preferred primary name server. In normal operations, it will behave identical to when only
a single primary name server is defined with one minor difference. Notifications received from
different (not the preferred) primary masters, will be trigger the normal transfer procedure to the
preferred master. If the preferred primary name server itself is lagged with updates, YADIFA will
not try to find the most current server (highest serial), but keep itself in sync with the prefered
master. This is a deliberate design decision and will be explained later in this document.

The differences become apparent when a zone transfer fails. When the number of transfer failures
exceed the multimaster-retries option, the next primary name server will be selected as the new
preferred master. The previous preferred master is added to the end of the list. The backing-off
mechanism is explained in a different section.

note

A Notification of Zone Changes [48] (DNS NOTIFY) from a different primary
will trigger the mechanism to update the zone, but YADIFA will keep itself
in sync with the preferred primary only.

note

With the exception of a reload of the configuration, transfer failures will
be considered as the only reason to change the preferred master.

The reason, be it a networking error, Server Failure (rcode 2)[43] (SERVFAIL), Server Not Au-
thoritative for zone (rcode 9)[12] (NOTAUTH), TSIG, too slow, or anything else causing a transfer
failure, is irelevant for the switching decision. When the transfer is not successful, it is considered
a failure.

configuration example

<zone>
domain somedomain.eu

0 7 2

file slaves/somedomain.eu.
type slave
masters 192.0.2.1,192.0.2.2,192.0.2.3
multimaster-retries 2

</zone>

In this example:

The list of primaries is “192.0.2.1,192.0.2.2,192.0.2.3” and the first preferred primary is 192.0.2.1
and will be used to initiate a transfer of the zone.

When a DNS NOTIFY is received from any primary (e.g. 192.0.2.2) the SOA of the preferred
master 192.0.2.1 is checked. If the serial is bigger a transfer will be initiated from 192.0.2.1.

If the transfer from 192.0.2.1 fails 3 times (initial + 2 retries), the next primary in the list
(192.0.2.2) will become the new preferred primary and the new list will be
“192.0.2.2,192.0.2.3,192.0.2.1”.

note

When true-multimaster is set to false (default), the secondary name server
will not perform a (partial) zone transfer when switching to the new
preferred master with a lower or identical serial.

True multimaster

There are several scenarios in which an organisation runs several independent primary name servers.
When there are independent masters, we cannot be sure that the zone content on all the primaries
is identical. Differences in update sizes or in jitter may cause differences in the zone content. The
flag true-multimaster should be used in this case.

The behavior of YADIFA is similar to a regular multimaster setup, with the difference that, when
a new preferred primary is taken, the system will request a full zone transfer rather than an
incremental. Updates from the same preferred primary will result in an IXFR. Switching to a
different preferred primary should be avoided as it would otherwise result in a lot of unnecessary
strain on the primaries, the secondaries and the network. Therefore, when a notify is received from
a primary name server which is not the preferred primary, the serial of the preferred primary is
checked. And an incremental transfer is initiated from the preferred master when necessary.

note

When true-multimaster is set to true, the secondary name server will always
perform a full zone transfer when switching to the new preferred master
regardless of the serial number.

0 7 3

Backing-off mechanism

The back-off time before a new transfer is attempted, can be configured in the <main> section
with the option xfr-retry-delay. A jitter can also be applied with the option xfr-retry-jitter. To
increase the back-off time between failed transfers, two other parameters can be used: xfr-retry-
failure-delay-multiplier and xfr-retry-failure-delay-max.

The formula for the backing-off mechanism is the following:

xfr-retry-delay + xfr-retry-jitter + min(failed-transfers * xfr-retry-failure-delay-multiplier ; xfr-
retry-failure-delay-max)

configuration

<main>
xfr-retry-jitter 0 # Not possible, minimum 60

but makes the math clearer
xfr-retry-delay 200
xfr-retry-failure-delay-multiplier 50
xfr-retry-failure-delay-max 200

</main>

<zone>
domain somedomain.eu
file slaves/somedomain.eu.
type slave
masters 192.0.2.1,192.0.2.2,192.0.2.3
multimaster-retries 6

</zone>

In this example:

The xfr-retry-jitter is ignored to make the example easier to explain.

Consider the following scenario:

The preferred primary is 192.0.2.1 is unavailable, as is 192.0.2.2.

An update to the zone is done.

A DNS NOTIFY is received from 192.0.2.3.

YADIFA will do the following:

1. check the SOA over UDP with the preferred master 192.0.2.1 which fails.

2. initiate an IXFR with the current serial over TCP which also fails.

0 7 4

3. YADIFA will wait 250 seconds (200 + 1 * 50) (first failure) which also fails.

4. YADIFA will wait 300 seconds (200 + 2 * 50) (second failure) which also fails.

5. YADIFA will wait 350 seconds (200 + 3 * 50) (third failure) which also fails.

6. YADIFA will wait 400 seconds (200 + 4 * 50) (fourth failure) which also fails.

7. YADIFA will wait 400 seconds (200 + 200) (fifth failure) which also fails.

8. YADIFA will wait 400 seconds (200 + 200) (sixth failure) which also fails.

9. YADIFA will wait 400 seconds and switch the preferred primary to 192.0.2.2 and transfer
fails.

10. YADIFA will wait 250 seconds (200 + 1 * 50) (first failure) which also fails.

11. YADIFA will wait 300 seconds (200 + 2 * 50) (second failure) which also fails.

12. YADIFA will wait 350 seconds (200 + 3 * 50) (third failure) which also fails.

13. YADIFA will wait 400 seconds (200 + 4 * 50) (fourth failure) which also fails.

14. YADIFA will wait 400 seconds (200 + 200) (fifth failure) which also fails.

15. YADIFA will wait 400 seconds (200 + 200) (sixth failure) which also fails.

16. YADIFA will wait 400 seconds and switch the preferred primary to 192.0.2.3 and transfer
succeeds.

Design reasoning

The design of YADIFA takes the following into consideration, in order of importance:

1. The integrity of the zone content

2. The availability of the zone.

3. The zone content is up-to-date.

In a secondary name server, there are 9 possible areas in which a zone file can be:

1. True Master ON in the zone section of the secondary name server

Zone data, where the primary name server uses DNS UPDATE to update content and the
zone file is DNSSEC

Zone data, where the primary name server uses DNS UPDATE to update content

0 7 5

Zone data, where the primary name server does not use DNS UPDATE , the content is up-
dated through the reloading of the zone data and an augmentation of the serial of the SOA

Zone data, where the primary name server does not use DNS UPDATE and the zone data is
DNSSEC , the content is updated through the reloading of the zone data and an augmentation
of the serial of the SOA.

The true-master option in YADIFA is used for installations where the zone content of the primary
name servers is not identical. The reasons as to why the zone content is not identical is beyond the
scope of this document.

Defining multiple primary masters for a zone file indicates that, if the secondary name server is
unable to transfer the zone from the preferred primary name server, the secondary name server
will communicate with the next primary name server in its list of masters for reception of its zone
content.

As the zone content is not guaranteed to be identical, the only option is to perform a full trans-
fer. With that said, as changing between primary masters is very costly resource wise, YADIFA
allows, tuneable with several parameters, for the preferred primary to recover from any tempo-
rary issues that might otherwise lead to a switch. Altough networks have become very reliable,
a DNS NOTIFY is sent through UDP which does not guarantee delivery. Therefore, when a
DNS NOTIFY from a different primary is received, YADIFA will still check the SOA serial of the
preferred primary in case the notify was lost.

In all the cases, (dynamic, static, DNSSEC or not DNSSEC), delaying a switch to a different pri-
mary master will reduce the amount of wasted resources while maintaining the highest operational
performance. The connection retries to the primary name server can be configured accordingly.
If, after “X” retries no connection can be established with the primary name server, the second
primary name server will take its place in the list, resulting in an AXFR.

note

In true multi-master setups, the same or a higher serial does not mean that
the zone content is more up-to-date.

2. True Master OFF

In this case, YADIFA considers all the primary name servers with the same serial as having identical
zone data.

Zone data, where the primary name server uses DNS UPDATE to update content and the
zone file is DNSSEC

Zone data, where the primary name server uses DNS UPDATE to update content

Zone data, where the primary name server does not use DNS UPDATE , the content is up-
dated through the reloading of the zone data and an augmentation of the serial of the SOA

0 7 6

Zone data, where the primary name server does not use DNS UPDATE and the zone data is
DNSSEC , the content is updated through the reloading of the zone data and an augmentation
of the serial of the SOA

Zone data, where there is a single primary name server and intermediary masters.

When YADIFA receives a DNS NOTIFY , it always communicates with the same primary name
server for reception of the changes (AXFR or IXFR). If YADIFA receives a DNS NOTIFY that
contains a SOA resource record with a lesser or equal serial than its own, it ignores the message.

However, for primary name servers using a dynamic zone file with DNSSEC , one REALLY cannot
be sure, no matter the configuration, that the same SOA serial has the same zone data. This is due
to jitter in signing the zone, resigning of the zone and dynamic updates which are never completely
on the same time on all primary name servers. This results in the content not being 100 percent
identical on all the primary name servers. In this case, true-master ON is the best and only
choice. Please Note: This relates to real primary name servers and not intermediary masters.

In the other cases, assuming for the DNSSEC enabled zone that all the signatures are pre-calculated
and that primary name server(s) are not responsible for maintaining the signatures, which would
otherwise result in a scenario where true multi-master would be preferred, we are absolutely sure
that the content is identical. The zone content could be updated quickler by switching to the first
primary name server for which a DNS NOTIFY is received.

If switching to a different primary name server could be performed with an incremental transfer,
the cost of switching would be negligable and would result in the most up-to-date information for
the slave. Unfortunately, we cannot be sure that switching to a different primary will result in a
small incremental transfer.

Some setups (e.g. without bind’s ixfr-from-differences yes;) could result in an AXFR through
an update while others have huge incremental updates. The primary name servers in the configu-
ration may have other paths with different bandwidth restrictions and costs associated with them.
Therefor the benefits of quickly switching to a different primary is uncertain therefore, the choice is
given to the administrator to specify the most desirable primary. YADIFA will respect this choice
by only switching when absolutely necessary.

For a host master with thousands of zones to administer, the load between different masters can
be distributed by simply rotating the primary name servers in the configuration.

3. Round robin scheme vs original preference list

To avoid flapping services, we have opted to implemented a round-robin scheme. When the first
primary name server is known to be bad (configurable), the next primary name server in the list
will become the new preferred primary. When the host master has addressed the issue and wants
to switch back to the “first” primary name server, this can be done by issuing a config reload.

0 7 7

13.2 What is needed?

13.2.1 Zone

configuration example of <zone> with several masters

<zone>
domain somedomain.eu
file somedomain.eu.
type slave

masters 192.0.2.1,192.0.2.2,192.0.2.3
true-multimaster no # ’no’ is default, this line can be left out

</zone>

In this example the secondary name server listens to the notifications from the 3 primary name
servers (masters). The secondary name server will always ask for DNS UPDATES from the first
in the list. In this example: 192.0.2.1.

If the first primary name server no longer answers, the secondary name server will ask for updates
from the second primary name server in the list, 192.0.2.2. From then on the secondary name
server continues to ask that primary name server for updates until it no longer answers. Once that
happens the secondary name server asks the next one in the list. After the last primary name
server stops answering, the secondary name server starts from the first in the list, 192.0.2.1, again.

If the true-multimaster is set to “no”, the secondary name server expects that all primary name
servers are in sync and that their zone information is the same.

0 7 8

14
Configuration Reference

14.1 Layout

The configuration file has some rules:

The configuration is read from a simple text file.

A comment starts after the “#” character.

Empty lines have no effect.

A string can be double quoted, but is not mandatory.

The configuration file is made up of sections. A section starts with a with a <name> line and ends
with a </name> line.

Currently the following sections are implemented:

“main” section (see on page 82) (<main>)

“zone” section (see on page 87) (<zone>)

“key” section (see on page 90) (<key>)

“acl” section (see on page 91) (<acl>)

“channels” section (see on page 92) (<channels>)

“loggers” section (see on page 95) (<loggers>)

“nsid” section (see on page 98) (<nsid>)

“rrl” section (see on page 99) (<rrl>)

“dnssec-policy” section (see on page 100) (<dnssec-policy>)

“key-suite” section (see on page 101) (<key-suite>)

0 7 9

“key-roll” section (see on page 101) (<key-roll>)

“key-template” section (see on page 102) (<key-template>)

“denial” section (see on page 103) (<denial>)

Unimplemented section names are ignored.

The section order is only of importance for sections of the same type where the principle first-
found-first-processed applies. In other words, the last settings will overwrite ealier declarations
of the same parameter. One exception is the <zone> section, where a declaration for the same
domain will result in the error DATABASE ZONE CONFIG DUP.

configuration example

<zone>
domain somedomain.eu
file masters/somedomain.eu.zone
type master

</zone>

<zone>
domain somedomain.eu
file masters/someotherdomain.eu.zone
type master

</zone>

In this example for the zone somedomain.eu, the file will be “masters/somedomain.eu.zone”.

The processing order of each section type is determined by the server implementation.
Each section contains settings. A setting is defined on one line but can be spread over multiple
lines using parenthesis.

configuration example

comment
comment
<first>
commment

setting0-name value ...
setting1-name value ...

</first>

<second>
setting2-name (

value
...

)
comment
</second>

0 8 0

14.2 Types

Each setting can be one of the following types.

TYPE DESCRIPTION

ACL A list of ACL descriptors. User-defined ACLs are found in the <acl>
section. The “any” and “none” descriptors are always defined. Elements of
the list are separated by a “,” or a “;”.

DNSSECTYPE A DNSSEC type name. It can be a DNSSEC-enabled value (“nsec”,
“nsec3” or “nsec3-optout”) or a DNSSEC-disabled value (“none”, “no”,
“off” or “0”).

ENUM A word from a specified set.
FLAG A boolean value. It can be true (“1”, “enable”, “enabled”, “on”, “true”,

“yes”) or false (“0”, “disable”, “disabled”, “off”, “false”, “no”).
FQDN An Fully Qualified Domain Name (FQDN) text string. i.e.:

www.eurid.eu.
GID Group ID. (Can be a number or a name)
HOST(S) A (list of) host(s). A host is defined by an IP (v4 or v6) and can be followed

by the word ‘port’ and a port number. Elements of the list are separated
by a ‘,’ or a ‘;’.

INTEGER / INT A base-ten integer.
NETMOD “single” or 0: Each working thread reads a single message, processes its

answer and replies to it. “buffered” or 1 : Working threads are working
by couple. One reads a single message and queues it, one de-queues it,
processes its answer and replies to it.
“multi” or 2 : Each working thread reads a multiple messages, processes
their answers and replies to them.

PATH / FILE A file or directory path. i.e.: “/var/zones”.
STRING / STR A text string. Double quotes can be used but are not mandatory. Without

quotes the string will be taken from the first non-blank charater to the last
non-blank character.

HEXSTR A hexadecimal even-length text string.
RELDATE A cron-like date to be matched, relative to another. The columns

are minutes [0;59], hours [0;23], days [0;31], months [1;12], weekdays
[mon,tue,wed,thu,fri,sat,sun] and week-of-the-month [0;4]. Multiple values
can be set in a column cell using ’,’ as a separator. The ’*’ character can
be used to set all possible values of its column cell.

RELTIME A time offset relative to another. It’s written as +integer[unit-character]
(e.g.: +24h) where the unit character can be seconds, minutes, hours, days
or weeks.

SECONDS A base-ten integer.
HOURS A base-ten integer.
DAYS A base-ten integer.

0 8 1

UID User ID. (Can be a number or a name)
TYPES

14.3 Sections

14.3.1 <main> section

This section defines the global or default settings of the server.

PARAMETER TYPE DEFAULT DESCRIPTION

allow-control ACL none Default server-control access control
list. Only the sources matching the
ACL are accepted.

allow-notify ACL any Default notify access control list.
Only the servers matching the ACL
will be handled.

allow-query ACL any Default query access control list.
Only the clients matching the ACL
will be replied to.

allow-transfer ACL none Default transfer access control list.
Only the clients matching the ACL
will be allowed to transfer a zone
(AXFR/IXFR).

allow-update ACL none Default update access control list.
Only the clients matching the ACL
will be allowed to update a zone.

allow-update-forwarding ACL none Default update-forwarding access
control list. Only the sources
matching the ACL are accepted.

answer-formerr-packets FLAG true If this flag is disabled; the server will
not reply to badly formatted packets.

axfr-compress-packets;
axfr-compresspackets;
xfr-compresspackets

FLAG true Enables the DNS packet compression
of each AXFR packet.

axfr-max-packet-size;
axfr-maxpacketsize; xfr-
maxpacketsize

INT 4096 bytes The maximum size of an AXFR
packet. (MIN: 512; MAX: 65535)

1LOCALSTATEDIR is set at compile time; typically PREFIX/var or /var

0 8 2

axfr-max-record-
by-packet; axfr-
maxrecordbypacket;
xfr-maxrecordbypacket

INT 0 The maximum number of records in
each AXFR packet. Older name
servers can only handle 1. Set to 0
to disable the limit. (MIN: 0; MAX:
65535)

axfr-retry-delay;xfr-retry-
delay

SECONDS 600 Number of seconds between each
retry for the first transfer from the
master name server. (MIN: 60;
MAX: 86400)

axfr-retry-jitter;xfr-retry-
jitter

SECONDS 180 Jitter applied to axfr-retry-delay.
(MIN: 60; MAX: axfr-retry-delay)

axfr-retry-failure-delay-
multiplier;xfr-retry-failure-
delay-multiplier

INT 5 Linear back-off multiplier. The mul-
tiplier times the number of failures is
added to the xfr-retry-delay. (MIN:
0; MAX: 86400)

axfr-retry-failure-delay-
max;xfr-retry-failure-
delay-max

SECONDS 3600 Maximum delay added for the back-
off. (MIN: 0; MAX: 604800)

axfr-strict-authority FLAG yes (unless
–enable-
non-aa-axfr-
support was
used)

Tells yadifad to be strict with the AA
flag in AXFR answers

chroot FLAG off Enabling this flag will make the
server jail itself in the chroot-path di-
rectory.

chroot-path; chrootpath PATH / The directory used for the jail.
cpu-count-override INT 0 Overrides the detected number of log-

ical cpus. Set to 0 for automatic.
(MIN: 0; MAX: 256)

daemon; daemonize FLAG false Enabling this flag will make the
server detach from the console and
work in background.

data-path; datapath PATH zones1 The base path were lies the data
(zone file path; journaling data; tem-
porary files; etc.)

do-not-listen HOSTS - An exclusion list of addresses to never
listen to. If set, 0.0.0.0 and ::0 will
always be split by interface to isolate
the address.

edns0-max-size INT 4096 EDNS0 packets size. (MIN: 512;
MAX: 65535)

gid; group GID 0 (or root) The group ID that the server will use.
hidden-master FLAG no As a hidden master more CPU

will be used for various maintenance
tasks.

0 8 3

hostname-chaos; hostname STR the host name The string returned by a hostname-
chaos TXT CH query.

keys-path; keyspath PATH zones/keys1 The base path of the DNSSEC keys.
listen HOSTS 0.0.0.0,::0 The list of interfaces to listen to.
log-files-disabled FLAG no If set, disables checking the log-path

directory for existence and writing
rights.

log-path; logpath PATH log1 The base path where the log files are
written.

log-unprocessable FLAG off Enabling this flag will make the
server log unprocessable queries.

max-tcp-queries; max-tcp-
connections

INT 16 The maximum number of parallel
TCP queries; allowed. (MIN: 1;
MAX: 255)

network-model NETMOD multi Sets the networking model of yadifa.
pid-file; pidfile STR run/yadifad.pid1The pid file name.
queries-log-type INT 1 Query log format. (0: none; 1: YAD-

IFA format; 2: BIND format; 3:
YADIFA and BIND format at once)

serverid-chaos; serverid STR - The string returned by a id.server.
TXT CH query. If not set; RE-
FUSED is answered.

server-port; port INT 53 The default DNS port. (MIN: 1;
MAX: 65535)

sig-validity-interval DAYS 30 The number of days for which an au-
tomatic signature is valid. (MIN: 7
days; MAX: 30 days)

sig-validity-jitter; sig-jitter SECONDS 3600 The signature expiration validity jit-
ter in seconds (1 hour). (MIN: 0 sec;
MAX: 86400 sec)

sig-validity-regeneration HOURS automatic Signatures expiring in less than the
indicated amount of hours will be re-
computed. The default will be chosen
by YADIFA . (MIN: 24 hours; MAX:
168 hours)

statistics FLAG true The server will log a report line about
some internal statistics.

statistics-max-period SECONDS 60 The period in seconds between two
statistics log lines. (MIN: 1 sec;
MAX: 31 * 86400 seconds (31 days))

tcp-query-min-rate INT 512 bytes/sec-
ond

The minimum transfer rate required
in a TCP connection (read and
write). Slower connections are closed.
The units are bytes per second.
(MIN: 0; MAX: 4294967295)

0 8 4

http://www.yadifa.eu
http://www.yadifa.eu
http://www.yadifa.eu
http://www.yadifa.eu

thread-affinity-base INT 0 Sets the first CPU to set affinity for.
Set it to the real CPU of a core.
(MIN: 0; MAX: 3)

thread-affinity-multiplier INT 0 Sets the multiplier chosing CPU to
set affinity for. Allows avoiding hy-
perthread cores. Set to 0 for auto-
matic avoiding. (MIN: 0; MAX: 4)

thread-count-by-address INT -1 Number of independent threads used
to process each listening address. Set
to -1 for automatic. Set to 0 for single
threaded. (MIN: -1; MAX: number of
CPU’s)

uid; user UID 0 (or root) The user ID that the server will use.
version-chaos; version STR yadifa ver-

sion#
The text to include in the version
TXT CH query.

xfr-connect-timeout SECONDS 5 Timeout for establishing a connec-
tion for AXFR and IXFR transfers.
Set to 0 to disable. (MIN: 0; MAX:
4294967295)

xfr-path; xfrpath PATH zones/xfr1 The base path used for AXFR and
journal storage.

zone-download-thread-
count

INT 4 Number of independent threads used
to download the zones. (MIN: 0;
MAX: 255)

zone-load-thread-count INT 1 Number of independent threads used
to process loading of the zones.
(MIN: 0; MAX: 255)

zone-store-thread-count INT 1 Sets the number of threads used to
store a zone on disk (MIN: 1, MAX:
4).

zone-unload-thread-count INT 1 Sets the number of threads used to
delete a zone from memory (MIN: 1,
MAX: 4).

worker-backlog-queue-size INT 16384 For network-model 1, sets the size of
the backlog queue (MIN: 4096, MAX:
1048576).

MAIN SECTION

0 8 5

configuration example

<main>
chroot on
daemonize true
chroot-path /srv/yadifa/var
keys-path /zones/keys
data-path /zones
log-path /log
pid-path /run
pid-file yadifad.pid

cpu-count-override 6
dnssec-thread-count 10
max-tcp-queries 100
tcp-query-min-rate 6000

additional-from-auth yes
authority-from-auth yes
answer-formerr-packets no

listen 192.0.2.53, 192.0.2.153 port 8053

hostname my-shown-hostname
serverid ns-loc-01

user yadifad
group yadifad

statistics yes
statistics-max-period 60

could have been written as: ’version not disclosed’ without the ’
version "not disclosed"

note: Any is default anyway
allow-query any
allow-update operations-network ; public-network
allow-transfer slaves ; operations-network ; public-network

sig-validity-interval 360
sig-validity-regeneration 48
sig-validity-jitter 1800

axfr-max-record-by-packet 0
axfr-max-packet-size 32768
axfr-compress-packets true

</main>

0 8 6

PARAMETER TYPE DEFAULT DESCRIPTION

enabled FLAG YES If enabled, yadifad will process con-
troller queries.

MAIN SECTION

14.3.2 <zone> sections

Each zone is defined by one section only.

PARAMETER TYPE DEFAULT DESCRIPTION

allow-control ACL as main Control commands control list. Only
the matching sources are allowed.

allow-notify ACL as main Notify access control list. Only the
servers matching the ACL will be
handled.

allow-query ACL as main Query access control list. Only the
clients matching the ACL will be
replied to.

allow-transfer ACL as main Tansfer access control list. Only
the clients matching the ACL will
be allowed to transfer a zone
(AXFR/IXFR

allow-update ACL as main Update access control list. Only the
clients matching the ACL will be al-
lowed to update a zone.

allow-update-forwarding ACL as main Update forwarding control list. Only
the matching sources are allowed.

dnssec-mode; dnssec DNSSEC-
TYPE

off Type of DNSSEC used for the zone.
As master name sever; YADIFA will
try to maintain that state.

dnssec-policy STR - Sets the dnssec-policy id to be used.
domain FQDN - Mandatory. Sets the domain of the

zone (i.e.: eurid.eu).
drop-before-load FLAG off Enabling this flag will make the

server drop the zone before loading
the updated zone from disk. Use this
on systems constrained for RAM.

0 8 7

http://www.yadifa.eu

file-name; file FILE - Sets the zone file name. Only manda-
tory for a master zone. Relative
paths to <main> data-path

journal-size-kb; journal-
size

INT 0 Puts a soft limit on the size of the
journal; expressed in KB. (MIN: 0;
MAX: 3698688 (3GB))

keys-path; keyspath PATH as main The base path of the DNSSEC keys.
maintain-dnssec FLAG true Enabling this flag will cause the

server to try and maintain RRSIG
records

masters; master HOSTS - Mandatory for a slave. Sets the mas-
ter server(s). Multiple masters are
supported.

multimaster-retries INT 0 The number of times the master is
unreachable before switching to a dif-
ferent master. (MIN: 0; MAX: 255)

no-master-updates FLAG false Enabling this flag will prevent the
server from probing or downloading
changes from the master.

notifies; also-notify; notify HOSTS - The list of servers to notify in the
event of a change. Currently only
used by masters when a dynamic up-
date occurs.

notify-auto FLAG true Enabling this flag will cause
DNS NOTIFY messages to be
sent to all name servers in the
APEX. Disabling this flags causes
the content of APEX to be ignored
(NS Records).

notify-retry-count; retry-
count

INT 5 Number of times YADIFA tries to
send a DNS NOTIFY . (MIN: 0;
MAX: 10)

notify-retry-period; retry-
period

INT 1 Time period in minutes between two
DNS NOTIFY attempts. (MIN: 1;
MAX: 600)

notify-retry-period-
increase; retry-period-
increase

INT 0 Increase of the time period in min-
utes between two DNS NOTIFY at-
tempts. (MIN: 0; MAX: 600)

rrsig-nsupdate-allowed;
rrsig-push-allowed

FLAG false If this flag is set the server allows
to edit RRSIG records using dynamic
updates.

sig-validity-interval;
signature-validity-interval

DAYS as main The number of days for which an au-
tomatic signature is valid. (MIN: 7
days; MAX: 30 days)

0 8 8

http://www.yadifa.eu

sig-validity-regeneration;
signature-regeneration

HOURS as main The signatures expiring in less than
the indicated amount of hours will be
recomputed. (MIN: 24 hours; MAX:
168 hours)

sig-validity-jitter;
signature-sig-jitter;
signature-jitter; sig-jitter

SECONDS as main The signature expiration validity jit-
ter in seconds. (MIN: 0 sec; MAX:
86400 sec)

true-multimaster FLAG off Enabling this flag will make the
server use AXFR when switching to
a new master.

type ENUM - Mandatory. Sets the type of zone :
either master or slave.

ZONE SECTION

sig-* and allow-* settings defined here have precedence over those in the <main> section.

configuration example

<zone>
domain somedomain.eu.
type master
file-name masters/somedomain.eu-signed.txt

The rest is not mandatory ...

also-notify 192.0.2.194, 192.0.2.164

Doing this is pointless since it’s both the global setting AND
the default one

allow-query any
allow-update my-network; 127.0.0.1
allow-transfer my-slaves

Same as global setting
sig-validity-interval 720 # 30 days is enough
sig-validity-regeneration 12
sig-validity-jitter 7200

journal-size-kb 64 # 64 KB
</zone>

<zone>
domain someotherdomain.eu
type slave
master 192.0.2.53

</zone>

0 8 9

14.3.3 <key> sections

Each TSIG key must be defined by one section.

PARAMETER TYPE DEFAULT DESCRIPTION

algorithm ENUM - Mandatory. Sets the algorithm of
the key. Supported values are :
‘hmac-md5’,

‘hmac-sha1’,
‘hmac-sha224’,
‘hmac-sha256’,
‘hmac-sha384’,
‘hmac-sha512’
(the algorithm names are case insen-
sitive)

name FQDN - Mandatory. Sets the name of the key.
secret TEXT - Mandatory. Sets the value of the key.

BASE64 encoded.
KEY SECTION

configuration example

<key>
name yadifa
algorithm hmac-md5
secret WouldNtYouWantToKnowIt==

</key>

<key>
name eu-slave1
algorithm hmac-md5
secret WouldNtYouWantToKnowIt==

</key>

<key>
name eu-slave2
algorithm hmac-md5
secret WouldNtYouWantToKnowIt==

</key>

0 9 0

14.3.4 <acl> section

Each entry of the acl section defines a rule of access. Each rule is a name (a single user-defined
word) followed by a rule in the form of a list of statements. The separator can be “,” or “;”. The
“any” and “none” names are reserved. A statement tells if a source is accepted or rejected. Reject
statements are prefixed with “!”. Statements are evaluated in the following order: first from more
specific to less specific, then from reject to accept. If a statement matches, the evaluation will stop
and accordingly accept or reject the source. If no statement matches, then the source is rejected.

A statement can be either:

An IPv4 or an IPv6 address followed (or not) by a mask.
[!]ipv4|ipv6[/mask]

For example:

configuration sample

internal-network 192.0.2.128/26;2001:DB8::/32

The word ‘key’ followed by the name of a TSIG key.
key key-name

For example:

configuration sample

slaves key public-slave;key hidden-slave

An ACL statement name from the <acl> section. Note that negation and recursion are for-
bidden and duly rejected.
acl-name

For example:

configuration sample

who-can-ask-for-an-ixfr master;slaves;127.0.0.1

0 9 1

configuration example

<acl>
user-defined-name rule-statements

rule to accept this TSIG key

slave1 key eu-slave1

rule to accept that TSIG key

slave2 key eu-slave2

rule to accept what the slave1 and slave2 rules are accepting

slaves slave1;slave2

rule to accept this IP
master 192.0.2.2

rule to accept both this IPv4 network and that IPv6 network
operations 192.0.2.128/28;2001:DB8::/32

Now about the order of each ACL statement : the following rule

order-example-1 192.0.2.128/26 ; 192.0.2.5 ;
! 192.0.2.133 ; ! 192.0.2.0/26

will be understood the same way as this one

order-example-2 192.0.2.5 ; !192.0.2.133 ;
192.0.2.128/26 ; !192.0.2.0/26

Because in effect, both will be seen internally as:

order-example-3 !192.0.2.133 ; 192.0.2.5 ;
!192.0.2.0/26 ; 192.0.2.128/26

</acl>

14.3.5 <channels> section

Channels are loggers output stream definitions. Three types are supported:

file

STDOUT, STDERR

syslog.

Each channel is a name (a single user-defined word) followed by:

0 9 2

the “syslog” keyword, defining a channel to the syslog daemon. The keyword can be followed
by case-insensitive facilities and options arguments. These arguments will be given to syslog.
Note that only one facility should be given.
Supported facilities:

PARAMETER DESCRIPTION

auth Security/authorisation messages (DEPRECATED: use authpriv)
authpriv Security/authorisation messages (private)
cron Clock daemon (cron and at)
daemon System daemons without separate facility value
ftp Ftp daemon
local0 Reserved for local use
local1 Reserved for local use
local2 Reserved for local use
local3 Reserved for local use
local4 Reserved for local use
local5 Reserved for local use
local6 Reserved for local use
local7 Reserved for local use
lpr Line printer subsystem
mail Mail subsystem
news USENET news subsystem
syslog Messages generated internally by syslogd(8)
user Generic user-level messages
uucp UUCP subsystem

CHANNELS SECTION

Supported options:

PARAMETER DESCRIPTION

cons Write directly to system console if there is an error while sending
to system logger.

ndelay Open the connection immediately (normally, the connection is
opened when the first message is logged).

nowait Don’t wait for child processes that may have been created while
logging the message (On systems where it is relevant).

odelay Opening of the connection is delayed until syslog() is called (This
is the default, and need not be specified).

perror (Not in POSIX.1-2001.) Print to stderr as well.
pid Include PID with each message.

CHANNELS (syslog) SECTION

0 9 3

note

For more information: man syslog

For example:
configuration sample

syslog syslog CRON,PID

The “STDOUT” case-sensitive keyword, defining a channel writing on the standard output.
For example:

configuration sample

default-output STDOUT

The “STDERR” case-sensitive keyword, defining a channel writing on the standard error.
For example:

configuration sample

default-error STDERR

A relative file path, defining a channel writing on a file (append at the end). The file is
followed by the file rights as an octal number.
For example:

configuration sample

yadifa yadifa.log 0644

configuration example

<channels>
user-defined-name parameters

channel ’statistics’: a file called stats.log
with 0644 access rights
#
statistics stats.log 0644

channel ’syslog’ : a syslog daemon output using
the local6 facility and logging the pid of the process
#

0 9 4

syslog syslog local6,pid

channel ’yadifa’: a file called yadifa.log with 0644 access rights
#
yadifa yadifa.log 0644

channel ’debug-out’ : directly printing to stdout
#
debug-out STDOUT

channel ’debug-err’ : directly printint to stderr
#
debug-err STDERR

</channels>

14.3.6 <loggers> section

Yadifa has a set of log sources, each of which can have their output filtered (or ignored) and sent
to a number of channels.

A logger line is defined as the source name followed by the list of levels and then the list of channels.
The lists are “,” separated.

The current set of sources is:

SOURCES DESCRIPTION

database Database output (incremental changes, integrity checks, etc.)
dnssec DNSSEC output (NSEC , NSEC3 , signatures events)
server Server actions output (network setup, database setup, queries, etc.)
stats Internal statistics periodic output
system Low-level output (thread management, task scheduling, timed events)
zone Internal zone loading output
queries Queries output

LOGGERS SECTION

The current set of levels is:

0 9 5

LEVELS DESCRIPTION

emerg System is unusable
alert Action must be taken immediately
crit Critical conditions
err Error conditions
warning Warning conditions
notice Normal, but significant, condition
info Informational message
debug Debug-level 0 message
debug1 Debug-level 1 message
debug2 Debug-level 2 message
debug3 Debug-level 3 message
debug4 Debug-level 4 message
debug5 Debug-level 5 message
debug6 Debug-level 6 message
debug7 Debug-level 7 message
prod All non-debug levels
all All levels
* All levels

LEVELS

note

Messages at the ‘‘crit’’, ‘‘alert’’ and ‘‘emerg’’ levels do trigger an
automatic shutdown of the server.

If the logger section is omitted completely, everything is logged to the STDOUT channel. Negations
are not allowed.

configuration

<loggers>
info, notice and warning level messages from the database logging
will be output
database info,notice,warning yadifa
database err,crit,alert,emerg yadifa,syslog
server * yadifa
stats * statistics
system * debug-err
queries * queries
zone * yadifa

</loggers>

The defined loggers are:

0 9 6

system contains low level messages about the system such as memory allocation, threading, IOs,
timers and cryptography, . . .

database contains messages about most lower-level operations in the DNS database. ie: journal,
updates, zone loading and sanitization, DNS message query resolution, . . .)

dnssec contains messages about lower-level dnssec operations in the DNS database. ie: status,
maintenance, verification, . . .

server contains messages about operations in the DNS server. ie: startup, shutdown, configura-
tion, transfers, various services status (database management, network management, DNS
notification management, dynamic update management, resource rate limiting, . . .)

zone contains messages about the loading of a zone from a source (file parsing, transferred binary
zone reading, . . .)

stats contains the statistics of the server. (See chapter 17)

queries contains the queries on the server. Queries can be logged with the bind and/or with the
YADIFA format.

bind format:

client sender-ip#port: query: fqdn class type +SETDC (listen-ip)

YADIFA format:

query [id] {+SETDC} fqdn class type (sender-ip#port)

where:

id is the query message id
+ means the message has the Recursion Desired flag set
S means the message is signed with a TSIG
E means the message is EDNS
T means the message was sent using TCP instead of UDP
D means the message has the DNSSEC OK flag set
C means the message has the Checking Disabled flag set
fqdn is the queried FQDN
class is the queried class
type is the queried type
sender-ip is the IP of the client that sent the query
port is the port of the client that sent the query
listen-ip is the listen network interface that received the message

Note that on YADIFA any unset flag is replaced by a “-”, on bind only the “+” follows that
rule.

0 9 7

System operators will mostly be interested in the info and above messages of queries and stats, as
well as the error and above messages of the other loggers.

14.3.7 <nsid> section

note

If you want to have DNS Name Server Identifier Option (NSID) support in
YADIFA you need to enable this function before compiling the sources.

shell

$> ./ configure --enable -nsid

After the ‘‘configure’’, you can do the normal ‘‘make’’ and ‘‘make
install’’.

shell

$> make
$> make install

0 9 8

PARAMETER TYPE DEFAULT DESCRIPTION

ascii STR “” The string can be 512 characters long.
hex “”

NSID SECTION

configuration example ascii

<nsid>
ascii belgium-brussels-01

</nsid>

configuration example hex

<nsid>
hex 00320201

</nsid>

14.3.8 <rrl> section

YADIFA has support for RRL enabled by default.

PARAMETER TYPE DEFAULT DESCRIPTION

responses-per-second INT 5 Allowed response rate.
errors-per-second INT 5 Allowed error rate.
slip INT 2 Random slip parameter.
log-only FLAG false If set to true, logs what it should do with-

out doing it.
ipv4-prefix-length INT 24 Mask applied to group the IPv4 clients.
ipv6-prefix-length INT 56 Mask applied to group the IPv6 clients.
exempt-
clients,exempted

ACL none Clients maching this rule are not subject
to the RRL.

enabled FLAG false Enables the RRL
min-table-size INT 1024 RRL buffer minimum size
max-table-size INT 16384 RRL buffer maximum size
window INT 15 RRL sliding window size in seconds

RRL SECTION

0 9 9

configuration example

<rrl>
responses-per-second 5
errors-per-second 5
slip 10
log-only off
ipv4-prefix-length 24
ipv6-prefix-length 56
exempt-clients none
enabled yes

</rrl>

14.3.9 <dnssec-policy> section

The dnssec-policy section binds key suites and a denial mode. It is meant to be used as a dnssec-
policy parameter in a zone section. Usually two key-suite will be given: one for a KSK and one for
a ZSK .

PARAMETER TYPE DEFAULT DESCRIPTION

id STR - id of the dnssec-policy section.
description STR - Description for the dnssec-policy sec-

tion.
key-suite STR - id of the <key-suite> to be used.

Usually both a KSK and a ZSK
suites are given.

denial STR nsec id of the <denial> to be used for
NSEC3 or the argument ’nsec’ to use
NSEC .

DNSSEC-POLICY SECTION

configuration example with <denial>

<dnssec-policy>
id "dnssec-policy-nsec3"

description "Example of ZSK and KSK"
denial "nsec3-resalting-on"
key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

1 0 0

configuration example without <denial>

<dnssec-policy>
id "dp-nsec"

description "Example of ZSK and KSK"
denial "nsec"
key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

14.3.10 <key-suite> section

The key-suite section is used by dnssec policies and is meant to be referenced by a dnssec-policy
section. A key-suite links a key definition (key-template) with a deployment calendar (key-roll).

PARAMETER TYPE DEFAULT DESCRIPTION

id STR - id of the key-suite section.
key-template STR - id of the <key-template> to be used.
key-roll STR - id of the <key-roll> to be used.

KEY-SUITE SECTION

configuration example <key-suite>

<key-suite>
id "ksk-2048"

key-template "ksk-2048"
key-roll "yearly-schedule"

</key-suite>

14.3.11 <key-roll> section

The key-roll section is used by dnssec policies and is meant to be referenced by a key-suite section.
It’s essentially a deployment calendar. Each events is computed relatively to another. Dates
are chosen so that there is always a key in an active state. Please look at the examples as a
misconfiguration could easily span the life of a key over several years. If the RELDATE format
is being used, the first valid date matching the line is used. (e.g.: by being too restrictive on the
matching conditions) Usage of the RELDATE format is recommended over the RELTIME one.

1 0 1

PARAMETER TYPE DEFAULT DESCRIPTION

id STR - id of the key-roll section.
generate; generated; create RELTIME |

RELDATE
- Time when the key must be gener-

ated. Pre-dated before so it’s active
right now if it’s the first one. Always
computed so that the next activation
happens before the last deactivation.

publish RELTIME |
RELDATE

- Time when the key must be published
in the zone. Relative to the genera-
tion.

activate RELTIME |
RELDATE

- Time when the key will be used for
signing the zone or apex of the zone.
Relative to the publication.

inactive RELTIME |
RELDATE

- Time when the key will not be used
anymore for signing. Relative to the
activation.

delete RELTIME |
RELDATE

- Time when the key will be removed
out of the zone. Relative to the de-
activation.

KEY-ROLL SECTION

configuration example section-key-roll

<key-roll>
id "yearly-schedule"

generate 5 0 15 6 *
↪→ * # this year (2018) 15/06 at 00:05
publish 10 0 15 6 *
↪→ * # 00:10
activate 15 0 16 6 *
↪→ * # 16/06 at 00:15
inactive 15 0 17 6 *
↪→ * # (2019) 17/06 at 00:15
remove 15 11 18 6 *
↪→ * # (2019) 18/06 at 11:15

</key-roll>

14.3.12 <key-template> section

The key-template section is used by dnssec policies and is meant to be referenced by a key-suite
section. It contains the various parameters of a key for its generation.

1 0 2

PARAMETER TYPE DEFAULT DESCRIPTION

id STR - id of the key-template section.
ksk FLAG false When this flag is enabled a KSK will

be generated. When disabled a ZSK
will be generated.

algorithm ENUM 7 Sets the algorithm of the key.
Supported values are: ’DSA’; 3;
’RSASHA1’; 5; ’NSEC3DSA’;
6; ’NSEC3RSASHA1’; 7;
’RSASHA256’; 8; ’RSASHA512’;
10; ’ECDSAP256SHA256’; 13;
’ECDSAP384SHA384’; 14.

size INT 0 The length of the key in bits (incom-
patible sizes will be rejected). (MIN:
0; MAX: 4096)

KEY-TEMPLATE SECTION

configuration example section-key-template

<key-template>
id "ksk-2048"
ksk true
algorithm 8
size 2048
engine default

</key-template>

14.3.13 <denial> section

The denial section is used by dnssec policies and is meant to be referenced by a dnssec-policy
section. It is used to define the NSEC3 denial parameters of a dnssec policy. Policies using a
NSEC denial don’t need to use this section.

PARAMETER TYPE DEFAULT DESCRIPTION

1 0 3

id STR - id of the denial section.
salt HEXSTR - The actual salt to use. Mutually ex-

clusive with the salt-length option.
salt-length INT 0 The system will generate a random

salt with this length. Mutually ex-
clusive with the salt option. (MIN:
0; MAX: 256)

iterations INT 1 The number of iterations the salt and
hash should be applied to the label.
(MIN: 0; MAX: 65535)

optout FLAG false When this flag is enabled only dele-
gations which have a DS record will
be considered for NSEC3 record gen-
eration.

DENIAL SECTION

configuration example <denial>

<denial>
id "nsec3-resalting-on"

salt "ABCD"
#salt-length 4
iterations 5
optout off

</denial>

1 0 4

15
Zones

Only textual zones are implemented.

The format of a zone file is defined in RFC 1034[42] and RFC 1035[43].

zone file sample

;; Example domain
$TTL 86400 ; 24 hours
$ORIGIN somedomain.eu.

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (
1
3600
1800s
3600000s
600
)

86400 IN MX 10 mail.somedomain.eu.
86400 IN NS ns1.somedomain.eu.

ns1.somedomain.eu. 86400 IN A 192.0.2.2
mail.somedomain.eu. 86400 IN A 192.0.2.3
www.somedomain.eu. 86400 IN A 192.0.2.4

15.1 MACROS

Some macros are implemented:

@

$TTL

$ORIGIN

1 0 5

15.1.1 @

Use as a name, the @ symbol is replaced by the current origin.
The initial value is the domain field of the <zone> section.

For example:

configuration sample

<zone>
domain somedomain.eu
...

</zone>

zone file sample

;; The following @ is seen as somedomain.eu.

@ 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (
1
3600
1800s
3600000s
600
)

15.1.2 $TTL

This macro is the TTL value that is to be set for the resource records with an undefined TTL.

zone file sample

;; The following @ is seen as somedomain.eu.

$TTL 3600

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (
1
3600
1800s
3600000s
600
)

ns1.somedomain.eu. 86400 A 192.0.2.2

mail.somedomain.eu. 86400 A 192.0.2.3

1 0 6

www.somedomain.eu. 86400 A 192.0.2.4
A 192.0.2.5

ftp.somedomain.eu. A 192.0.2.6 ;; The TTL will be set using $TTL

15.1.3 $ORIGIN

The value of this macro is appended to any following domain name not terminating with a “.”. The
initial value is the domain field of the <zone> section.

zone file sample

;; The following @ is seen as somedomain.eu.

$TTL 3600
$ORIGIN somedomain.eu.
somedomain.eu. 86400 IN SOA ns1 info (

1
3600
1800s
3600000s
600
)

ns1 86400 A 192.0.2.2
mail 86400 A 192.0.2.3
www 86400 A 192.0.2.4

15.2 Classes

YADIFA knows only one class:

IN [43].

15.3 Resource record types

As master name server, YADIFA knows only the following RR types. Everything else will give an
error and be ignored.

1 0 7

TYPE VALUE REFERENCE SUPPORTED

A 1 RFC 1035[43] Y
NS 2 RFC 1035[43] Y
MD 3 RFC 1035[43] N
MF 4 RFC 1035[43] N
CNAME 5 RFC 1035[43] Y
SOA 6 RFC 1035[43] Y
MB 7 RFC 1035[43] N
MG 8 RFC 1035[43] N
MR 9 RFC 1035[43] N
NULL 10 RFC 1035[43] N
WKS 11 RFC 1035[43] Y
PTR 12 RFC 1035[43] Y
HINFO 13 RFC 1035[43] Y
MINFO 14 RFC 1035[43] N
MX 15 RFC 1035[43] Y
TXT 16 RFC 1035[43] Y
RP 17 RFC 1183[53] N
AFSDB 18 RFC 1183[53] RFC 5864[5] N
X25 19 RFC 1183[53] N
ISDN 20 RFC 1183[53] N
RT 21 RFC 1183[53] N
NSAP 22 RFC 1706[15] N
NSAP-PTR 23 RFC 1348[14] RFC 1637[16] RFC

1706[15]
N

SIG 24 RFC 4034[49] RFC 3755[57] RFC
2535[21] RFC 2536[22] RFC 2537[23]
RFC 2931[1] RFC 3110[2] RFC
3008[58]

N

KEY 25 RFC 4034[49] RFC 3755[57] RFC
2535[21] RFC 2536[22] RFC 2537[23]
RFC 2539[24] RFC 3008[58] RFC
3110[2]

N

PX 26 RFC 2163[6] N
GPOS 27 RFC 1712[9] N
AAAA 28 RFC 3596[52] Y
LOC 29 RFC 1876[19] N
NXT 30 RFC 3755[57] RFC 2535[21] N
EID 31 DNS Resource Records for Nimrod Rout-

ing Architecture
N

NIMLOC 32 DNS Resource Records for Nimrod Rout-
ing Architecture

N

SRV 33 RFC 2782[25] Y
ATMA 34 ATM Name System V2.0 N

1 0 8

http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
http://www.broadband-forum.org/ftp/pub/approved-specs/af-dans-0152.000.pdf

NAPTR 35 RFC 2915[18] RFC 2168[41] RFC
3403[40]

Y

KX 36 RFC 2230[7] N
CERT 37 RFC 4398[36] N
A6 38 RFC 3226[27] RFC 2874[33] RFC

6563[13]
N

DNAME 39 RFC 6672[59] N
SINK 40 The Kitchen Sink Resource Record N
OPT 41 RFC 6891[54] RFC 3225[17] N
APL 42 RFC 3123[38] N
DS 43 RFC 4034[49] RFC 3658[28] Y
SSHFP 44 RFC 4255[26] Y
IPSECKEY 45 RFC 4025[47] N
RRSIG 46 RFC 4034[49] RFC 3755[57] Y
NSEC 47 RFC 4034[49] RFC 3755[57] Y
DNSKEY 48 RFC 4034[49] RFC 3755[57] Y
DHCID 49 RFC 4701[29] N
NSEC3 50 RFC 5155[11] Y
NSEC3PARAM 51 RFC 5155[11] Y
TLSA 52 RFC 6698[51] Y
HIP 55 RFC 5205[39] N
NINFO 56 The Zone Status (ZS) DNS Resource

Record
N

RKEY 57 ENUM Encryption N
TALINK 58 talink-completed-template N
CDS 59 RFC 7344[10] N
CDNSKEY 60 RFC 7344[10] N
OPENPGPKEY 61 Using DANE to Associate OpenPGP pub-

lic keys with email addresses
N

CSYNC 62 RFC 7477[32] N
SPF 99 RFC 7208[37] N
UINFO 100 [IANA-Reserved] N
UID 101 [IANA-Reserved] N
GID 102 [IANA-Reserved] N
UNSPEC 103 [IANA-Reserved] N
NID 104 RFC 6742[50] N
L32 105 RFC 6742[50] N
L64 106 RFC 6742[50] N
LP 107 RFC 6742[50] N
EUI48 108 RFC 7043[3] N
EUI64 109 RFC 7043[3] N
DLV 32769 RFC 4431[56] N

SUPPORTED TYPES

1 0 9

http://tools.ietf.org/html/draft-eastlake-kitchen-sink
https://tools.ietf.org/html/draft-reid-dnsext-zs-01
https://tools.ietf.org/html/draft-reid-dnsext-zs-01
https://tools.ietf.org/html/draft-timms-encrypt-naptr-01
https://www.iana.org/assignments/dns-parameters/TALINK/talink-completed-template
https://tools.ietf.org/html/draft-ietf-dane-openpgpkey-03
https://tools.ietf.org/html/draft-ietf-dane-openpgpkey-03

16 Journal

YADIFA has got an updated journaling system since the release of version 2.4.0.

Before YADIFA 2.1.0:

is based on a append-only file

has a linear access time (with the exception of the last few entries) which was not ideal for
random access on big journals

could only be limited in growth by emptying it completely

Before YADIFA 2.4.0:

is based on a file that is being written in a cyclic fashion

has a relatively constant access time

can be limited in size, although it is not a hard limit.

From YADIFA 2.4.0, the index table appendix is dropped. The manually-set journal size is a hard
limit. The first time YADIFA 2.4.0 finds a pre-2.4.0 .cjf journal file, it plays it, stores the resulting
zone on disk and deletes the file so the updated .cjf version can be used.

The journal size is automatically set by YADIFA at around half the size of the zone size, but it
can be set to an arbitrary value through configuration. To do this, one merely needs to set journal-
size-kb in the <zone> section of the zone. The value range for version 2.4.0 is from 64KB to 3GB.
It is recommended to set it to a multiple of 64.

1 1 0

configuration example

<zone>
domain somedomain.eu

...
journal-size-kb 64

</zone>
<zone>

domain someotherdomain.eu
...
journal-size-kb 256000

</zone>

In order to reduce the size of the journal after reconfiguring it, it is recommended that one uses
the command line to synchonize the zone and wipe the journal empty.

1 1 1

17
Statistics

YADIFA has a range of statistics available with one configuration setting. The statistics logger
values are grouped into inputs, outputs and the RRL. Groups are composed of a name followed by
an open parenthesis containing several space-separated event=count fields and ending in a closed
parenthesis.

A single line of statistics looks as follows:

shell output

udp (in =303 qr =303 ni=0 up=0 dr=0 st =91191 un=0 rf =0)
↪→ tcp (in=369 qr=368 ni=0 up=0 dr=0 st=82477 un=0 rf=0 ax=0 ix=0 ov=0)
↪→ udpa (OK=242 FE=0 SF=0 NE=0 NI=0 RE=61 XD=0 XR=0 NR=0 NA=0 NZ=0 BV=0 BS=0 BK=0 BT=0BM
↪→ =0 BN=0 BA=0 TR =0)
↪→ tcpa (OK=209 FE=0 SF=0 NE=0 NI=0 RE=159 XD=0 XR=0 NR=0 NA=0 NZ=0 BV=0 BS=0 BK=0 BT=0
↪→ BM=0 BN=0 BA=0 TR =0) rrl (sl=0 dr=0)

You can clearly see the groups containing the event=count fields. There are currently 5 groups
defined:

udp(. . .) covers the UDP messages

udpa(. . .) covers the UDP messages answers

tcp(. . .) covers the TCP messages

tcpa(. . .) covers the TCP messages answers

rrl(. . .) covers the RRL events

The statistics logger counts the various events about the messages from the clients.

in input count
counts the number of DNS messages received

1 1 2

qr query count
counts the number of queries among the DNS messages

ni notify count
counts the number of notifications among the DNS messages

up update count
counts the number of updates among the DNS messages

dr dropped count
counts the number of DNS messages dropped

st total bytes sent (simple queries only)
counts the total number of bytes sent

un undefined opcode count
counts the number of undefined opcodes among the DNS messages

rf referral count
counts the number of referrals among the DNS queries

ax AXFR query count (TCP only)
counts the number of full zone transfers queried

ix IXFR query count (TCP only)
counts the number of incremental zone transfers queried

ov connection overflow (TCP only)
counts the number of times the TCP pool has been full when a new connection came in

The statistics logger answers counts the status of DNS answers sent to the clients.

OK NOERROR answer count

FE FORMERR answer count

SF SERVFAIL answer count

NE NXDOMAIN answer count

NI NOTIMP answer count

RE REFUSED answer count

XD YXDOMAIN answer count

XR YXRRSET answer count

NR NXRRSET answer count

NA NOTAUTH answer count

NZ NOTZONE answer count

1 1 3

BV BADVERS answer count

BS BADSIG answer count

BK BADKEY answer count

BT BADTIME answer count

BM BADMODE answer count

BN BADNAME answer count

BA BADALG answer count

TR BADTRUNC answer count

The RRL group only counts the two main events of the Response Rate Limiter.

dr dropped answer count
counts the number of times an answer has been dropped

sl truncated answer count
counts the number of times an answer that should have been dropped has been sent truncated
instead

1 1 4

18
Configuration Examples

18.1 Introduction

;; Example domain
$TTL 86400 ; 24 hours
$ORIGIN somedomain.eu.

somedomain.eu. 86400 IN SOA ns1.somedomain.eu. info.somedomain.eu. (
1
3600
1800s
3600000s
600
)

86400 IN MX 10 mail.somedomain.eu.
86400 IN NS ns1.somedomain.eu.

ns1.somedomain.eu. 86400 IN A 192.0.2.2
mail.somedomain.eu. 86400 IN A 192.0.2.3
www.somedomain.eu. 86400 IN A 192.0.2.4

1 1 5

18.2 YADIFA as a primary name server

18.2.1 The One That is Really Easy

primary name
server (1)

Figure 18.1: Primary name server (simple configuration)

configuration example of That is Really Easy

<zone>
domain somedomain.eu
file "masters/somedomain.eu."
type "master"

</zone>

1 1 6

18.2.2 The One With Activation of Logging

primary name
server (1)

Figure 18.2: Primary name server with logging

configuration example of Activation of Logging

<channels>
user-defined-name parameters
channel ’statistics’: a file called stats.log
with 0644 access rights
#
statistics stats.log 0644

channel ’syslog’ : a syslog daemon output using
the local6 facility and logging the pid of the process
#
syslog syslog local6,pid

channel ’yadifa’ : a file called yadifa.log with 0644 access rights
#
yadifa yadifa.log 0644

channel ’debug-out’ : directly printing to stdout
#
debug-out STDOUT

channel ’debug-err’ : directly printint to stderr
#
debug-err STDERR

</channels>
<loggers>

info, notice and warning level messages from the database logging
will be output
database info,notice,warning yadifa
database err,crit,alert,emerg yadifa,syslog
server * yadifa
stats * statistics
system * debug-err
queries * queries
zone * yadifa

</loggers>

1 1 7

<zone>
domain somedomain.eu
file "masters/somedomain.eu."
type "master"

</zone>

1 1 8

18.2.3 The One With NSID

primary name
server (1)

NSID

Figure 18.3: Primary name server with NSID

configuration example of NSID

<nsid>
ascii "yadifad example NSID"
alternatively, an hexadecimal format can be used
hex 79616469666164206578616d706c65204e5349440a

</nsid>

<zone>
domain somedomain.eu
file "masters/somedomain.eu."
type "master"

</zone>

1 1 9

18.2.4 The One With RRL

primary name
server (1)

RRL

Figure 18.4: Primary name server with RRL

configuration example of RRL

If YADIFA has been compiled with the Response Rate Limiter (default)
<rrl>

enable the RRL
enabled true

don’t actually limit the response rate, only log what the filter
would do
log-only false

how many responses per second are allowed for a client
(masked with the prefix)
responses-per-second 5

how many errors per second are allowed for a client
(masked with the prefix)
errors-per-second 5

window of time in which the rates are measured, expressed in seconds
window 15

every "slip" dropped answers, a truncated answer may randomly be
given so the client can ask again using TCP
slip 2

the min size of the table storing clients(masked with the prefix)
min-table-size 1024

the max size of the table storing clients(masked with the prefix)
max-table-size 16384

IPv4 clients are masked with this prefix
ipv4-prefix-length 24

IPv6 clients are masked with this prefix
ipv6-prefix-length 56

1 2 0

the list of IP/networks (Access Control List) not impacted by
the RRL
exempted none

</rrl>

<zone>
domain somedomain.eu
file "masters/somedomain.eu."
type "master"

</zone>

1 2 1

18.2.5 The One With DNSSEC Policy ’diary’ style

primary name
server (1)

Figure 18.5: Primary name server (DNSSEC policy ’diary’ style)

configuration example of DNSSEC policy ’diary’ style

<key-roll>
id "yearly-schedule"

generate 5 0 15 6 *
↪→ * # this year (2018) 15/06 at 00:05
publish 10 0 15 6 *
↪→ * # 00:10
activate 15 0 16 6 *
↪→ * # 16/06 at 00:15
inactive 15 0 17 6 *
↪→ * # (2019) 17/06 at 00:15
remove 15 11 18 6 *
↪→ * # (2019) 18/06 at 11:15

</key-roll>

<key-roll>
id "monthly-schedule"

generate 5 0 * * tue
↪→ 0 # 1 tuesday of the month at 00:05
publish 10 0 * * tue
↪→ 0 # 00:10
activate 15 0 * * wed
↪→ 0 # 1 wednesday of the month at 00:15
inactive 15 0 * * thu
↪→ 0 # 1 thursday of the month at 00:15
remove 15 11 * * fri
↪→ 0 # 1 friday of the month at 11:15

</key-roll>

<key-suite>
id "ksk-2048"
key-template "ksk-2048"
key-roll "yearly-schedule"

</key-suite>

1 2 2

<key-suite>
id "zsk-1024"
key-template "zsk-1024"
key-roll "monthly-schedule"

</key-suite>

<dnssec-policy>
id "dp-nsec"

description "Example of ZSK and KSK"
denial "nsec"
key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

<zone>
domain somedomain.eu
file masters/somedomain.eu.
type "master"
dnssec-policy "dp-nsec"

</zone>

1 2 3

18.2.6 The One With DNSSEC Policy ’relative’ style

primary name
server (1)

Figure 18.6: Primary name server (DNSSEC policy ’relative’ style)

configuration example of DNSSEC policy ’relative’ style

<key-roll>
id "yearly-schedule"

create +355d
publish +4h
activate +10d
inactive +366d
delete +7d

</key-roll>

<key-roll>
id "monthly-schedule"

create +30d
publish +2h
activate +7200 # 2 hours (in seconds)
inactive +31d
delete +7d

</key-roll>

<key-suite>
id "ksk-2048"
key-template "ksk-2048"
key-roll "yearly-schedule"

</key-suite>

<key-template>
id "ksk-2048"
ksk true
algorithm 8
size 2048
engine default

</key-template>

<key-suite>

1 2 4

id "zsk-1024"
key-template "zsk-1024"
key-roll "monthly-schedule"

</key-suite>

<key-template>
id "zsk-1024"
algorithm 8
size 1024
engine default

</key-template>

<denial>
id "nsec3-resalting-on"

salt "ABCD"
#salt-length 4
iterations 5
optout off

</denial>

<dnssec-policy>
id "dnssec-policy-nsec3"

description "Example of ZSK and KSK"
denial "nsec3-resalting-on"
key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

<zone>
domain somedomain.eu
file masters/somedomain.eu.
type "master"
dnssec-policy "dp-nsec"

</zone>

1 2 5

18.2.7 The One With RRSIG Update Allowed

primary name
server (1)

Figure 18.7: Primary name server (RRSIG Update Allowed)

configuration example of RRSIG Update Allowed

<key-roll>
id "yearly-schedule"

create +355d
publish +4h
activate +10d
inactive +366d
delete +7d

</key-roll>

<key-roll>
id "monthly-schedule"

create +30d
publish +2h
activate +7200 # 2 hours (in seconds)
inactive +31d
delete +7d

</key-roll>

<key-suite>
id "ksk-2048"
key-template "ksk-2048"
key-roll "yearly-schedule"

</key-suite>

<key-template>
id "ksk-2048"
ksk true
algorithm 8
size 2048
engine default

</key-template>

<key-suite>

1 2 6

id "zsk-1024"
key-template "zsk-1024"
key-roll "monthly-schedule"

</key-suite>

<key-template>
id "zsk-1024"
algorithm 8
size 1024
engine default

</key-template>

<denial>
id "nsec3-resalting-on"

salt "ABCD"
#salt-length 4
iterations 5
optout off

</denial>

<dnssec-policy>
id "dnssec-policy-nsec3"

description "Example of ZSK and KSK"
denial "nsec3-resalting-on"
key-suite "zsk-1024"
key-suite "ksk-2048"

</dnssec-policy>

<zone>
domain somedomain.eu
file masters/somedomain.eu.
type "master"
dnssec-policy "dp-nsec"
rrsig-nsupdate-allowed true

</zone>

1 2 7

18.2.8 The One With the Controller

controller

primary name
server (1)

Figure 18.8: Primary name server with controller

On the primary name server (${SYSCONFDIR}/yadifad.conf):

configuration example of controller (server)

<main>
allow-control "yadifa-controller"

</main>

<acl>
yadifa-controller key "controller-key"

</acl>

<key>
name "controller-key"
algorithm "hmac-md5"
secret "ControlDaemonKey"

</key>

1 2 8

On the controller (${HOME}/.yadifa.rc or ${SYSCONFDIR}/yadifa.conf):

configuration example of controller (client)

<yadifa-ctrl>
server 192.0.2.1
tsig-key-name "controller-key"

</yadifa-ctrl>

<key>
name "controller-key"
algorithm "hmac-md5"
secret "ControlDaemonKey"

</key>

1 2 9

18.3 YADIFA as a secondary name server

18.3.1 The One With One Master

secondary name
server

primary name
server (1)

Figure 18.9: Secondary name server (one master)

configuration example of One Master

<zone>
domain somedomain.eu
file "slaves/somedomain.eu."
type "slave"
master 192.0.2.1

</zone>

1 3 0

18.3.2 The One With Several Masters

secondary name
server

primary name
server (2)

primary name
server (1)

Figure 18.10: Secondary name server (several masters)

configuration example of Several Masters

<zone>
domain somedomain.eu
file "slaves/somedomain.eu."
type "slave"

masters 192.0.2.1,192.0.2.2
true-multimaster yes

</zone>

1 3 1

18.3.3 The One With Activation of Logging

secondary name
server

primary name
server (1)

Figure 18.11: Secondary name server with logging

configuration example of Activation of Logging

<channels>
user-defined-name parameters
channel ’statistics’: a file called stats.log
with 0644 access rights
#
statistics stats.log 0644

channel ’syslog’ : a syslog daemon output using
the local6 facility and logging the pid of the process
#
syslog syslog local6,pid

channel ’yadifa’ : a file called yadifa.log with 0644 access rights
#
yadifa yadifa.log 0644

channel ’debug-out’ : directly printing to stdout
#
debug-out STDOUT

channel ’debug-err’ : directly printint to stderr
#
debug-err STDERR

</channels>

<loggers>

1 3 2

info, notice and warning level messages from the database logging
will be output
database info,notice,warning yadifa
database err,crit,alert,emerg yadifa,syslog
server * yadifa
stats * statistics
system * debug-err
queries * queries
zone * yadifa

</loggers>

<zone>
domain somedomain.eu
file "slaves/somedomain.eu."
type "slave"
master 192.0.2.1

</zone>

1 3 3

18.3.4 The One With NSID

secondary name
server

NSID

primary name
server (1)

Figure 18.12: Secondary name server with NSID

configuration example of NSID

<nsid>
ascii "yadifad example NSID"
alternatively, an hexadecimal format can be used
hex 79616469666164206578616d706c65204e5349440a

</nsid>

<zone>
domain somedomain.eu
file "slaves/somedomain.eu."
type "slave"
master 192.0.2.1

</zone>

1 3 4

18.3.5 The One With RRL

secondary name
server

RRL

primary name
server (1)

Figure 18.13: Secondary name server with RRL

configuration example of RRL

If YADIFA has been compiled with the Response Rate Limiter (default)
<rrl>

enable the RRL
enabled true

don’t actually limit the response rate, only log what the filter
would do
log-only false

how many responses per second are allowed for a client
(masked with the prefix)
responses-per-second 5

how many errors per second are allowed for a client
(masked with the prefix)
errors-per-second 5

window of time in which the rates are measured, expressed in seconds
window 15

every "slip" dropped answers, a truncated answer may randomly be
given so the client can ask again using TCP
slip 2

the min size of the table storing clients(masked with the prefix)
min-table-size 1024

1 3 5

the max size of the table storing clients(masked with the prefix)
max-table-size 16384

IPv4 clients are masked with this prefix
ipv4-prefix-length 24

IPv6 clients are masked with this prefix
ipv6-prefix-length 56

the list of IP/networks (Access Control List) not impacted by
the RRL
exempted none

</rrl>

<zone>
domain somedomain.eu
file "slaves/somedomain.eu."
type "slave"
master 192.0.2.1

</zone>

1 3 6

19 Troubleshooting

By default YADIFA logs everything on the standard output. Warnings or errors may point to the
issue. When configuring the logging to suit your needs, it is recommended one keeps the levels:
warning,err,crit,alert and emerg for everything but the queries.

19.1 Submitting a bug report

If you are unable to fix the issue yourself, you can submit a bug report to the YADIFA team.
For critical issues (i.e.: crash), please use bugreport@yadifa.eu.
For any other issue or question, you can use yadifa-users@mailinglists.yadifa.eu.

The report should contain:

The operating system type and version

The version of YADIFA and how it was installed.

– If you configured it yourself : the ./configure parameters
– If you used a package : where from and what version

What machine it is running on

All the log output, preferrably with all levels enabled (* or any in the configuration file).

If you know them: the steps to reproduce the issue

If possible, the zone files and as much of the configuration file you can give (i.e.: everything
but the TSIG keys)

Please find enclosed two short scripts you can run on the server to retrieve most of the information
we need.

1 3 7

mailto:bugreport@yadifa.eu
mailto:yadifa-users@mailinglists.yadifa.eu

System information (some programs or files will not exist on your system):

script

#!/bin/sh

basic system information
echo uname:
echo ------
uname -a
OS
cat /etc/lsb_release
cat /etc/redhat-release
cat /etc/slackware-version
cat /etc/os-release
cat /etc/defaults/pcbsd
cat /etc/defaults/trueos
echo mount:
echo ------
mount
available disk space
echo df:
echo ---
df -h

available memory space
echo free:
echo -----
free -h

1 3 8

Hardware information:

script

#!/bin/sh
various hardware information

echo lscpu:
echo ------
lscpu

echo lspci:
echo ------
lspci

echo lshw:
echo -----
lshw

echo hwinfo:
echo -------
hwinfo

echo lsscsi:
echo -------
lsscsi

echo lsusb:
echo ------
lsusb

echo lsblk:
echo ------
lsblk

echo pciconf:
echo --------
pciconf -lvcb

1 3 9

Please find enclosed a short script you can run on the build machine to retrieve information about
the compiler:

script

#/bin/sh

compiler info (if you compiled yadifad yourself)
to run on the build machine

echo gcc:
echo ----
gcc -v -v
gcc -dM -E - < /dev/null

echo clang:
echo ------
clang -v -v
clang -dM -E - < /dev/null

19.2 Stacktrace

In the case of a crash, generating a stacktrace at the time of the problem arises may help to
understand the issue. Please note that it is best to do this with the debug symbols for the package
installed or with a binary that has not been stripped.

To generate the stacktrace, you can either use a generated core dump, or run yadifad in the
debugger.

Please note that the way to enable unlimited-size core dumps varies with your OS flavor. On some
linux, you can get its location by executing:

shell

$> cat /proc/sys/ kernel / core_pattern

And enable it typing, as root:

shell

$> ulimit -c unlimited

1 4 0

Be sure the command worked:

shell

$> ulimit -c

Should print:

shell output

unlimited

19.2.1 Using a core dump

With a core dump at hand, you can start the debugger like this:

gdb /path-to-yadifad/yadifad /path-to-yadifad-core-dump/yadifad-core-dump-file

For example:

shell

$> gdb /usr/local/sbin/ yadifad /var/cache/abrt/ yadifad .core

Then on the debugger prompt:

gdb

set logging file /tmp/yadifad-stacktrace.txt
set logging on
thread apply all bt

You can keep pressing the [enter] key until you are back to an empty (gdb) prompt

gdb

quit

1 4 1

The file /tmp/yadifad-stacktrace.txt will contain the stacktraces.

19.2.2 Running yadifad in the debugger

You can start the debugger like this:

gdb /path-to-yadifad/yadifad

shell

$> gdb /usr/local/sbin/ yadifad

Or, if yadifad is already running, like this:

1. search for pid of yadifad (e.g.: 12345)

2. gdp -p 12345

shell

$> gdb -p 12345

Then on the debugger prompt:

gdb

handle SIGUSR1 noprint pass
handle SIGUSR2 noprint pass
handle SIGTERM noprint pass
handle SIGINT noprint pass
handle SIGPIPE noprint pass
handle SIGHUP noprint pass
handle SIG33 noprint pass
set follow-fork-mode child
run

When the debugger stops with an error (i.e.: SIGSEGV, SIGABRT):

1 4 2

gdb

set logging file /tmp/yadifad-stacktrace.txt
set logging on
thread apply all bt

You can keep pressing the [enter] key until you get an empty (gdb) prompt.

gdb

quit

The file /tmp/yadifad-stacktrace.txt will contain the stacktraces.

19.3 Building yadifad with even more debugging information

When preparing to build yadifad, there are ./configure options that increase the debugging infor-
mation available.

The stacktrace information in the logs can be improved using –enable-bfd-debug. The cost of this
option can be considered negligible.
Please note that although very useful in some cases, the mutexes monitoring feature (enabled using
–enable-mutex-debug) is extremely expensive and should only be used in very specific cases.

In order to enable more debugging information, the make target “debug” greatly increases logging
and activates many runtime checks. All internal libraries must be compiled with the same target
so start from a clean source.

shell

$> make clean
$> make debug
$> sudo make install

Note that this kind of build may generate extremely huge log files. The increased logging is still
subject to the settings in yadifad.conf so it is still possible to tune the flow.

1 4 3

Bibliography

[1] D. Eastlake 3rd. DNS Request and Transaction Signatures (SIG(0)s), September 2000. RFC
2931.

[2] D. Eastlake 3rd. RSA/SHA-1 SIGs and RSA KEYs in the Domain Name System (DNS), May
2001. RFC 3110.

[3] J. Abley. Resource Records for EUI-48 and EUI-64 Addresses in the DNS, October 2013. RFC
7043.

[4] J. Abley. Authenticated Denial of Existence in the DNS, February 2014. RFC 7129.

[5] R. Allbery. DNS SRV Resource Records for AFS, April 2010. RFC 5864.

[6] C. Allocchio. Using the Internet DNS to Distribute MIXER Conformant Global Address Map-
ping (MCGAM), January 1998. RFC 2163.

[7] R. Atkinson. Key Exchange Delegation Record for the DNS, November 1997. RFC 2230.

[8] R. Austein. DNS Name Server Identifier (NSID) Option, August 2007. RFC 5001.

[9] C. Farrell / M. Schulze / S. Pleitner / D. Baldoni. DNS Encoding of Geographical Location,
November 1994. RFC 1712.

[10] W. Kumari / O. Gudmundsson / G. Barwood. Automating DNSSEC Delegation Trust Main-
tenance, September 2014. RFC 7344.

[11] B. Laurie / G. Sisson / R. Arends / D. Blacka. DNS Security (DNSSEC) Hashed Authenticated
Denial of Existence, March 2008. RFC 5155.

[12] Paul Vixie / S. Thomson / Y. Rekhter / J. Bound. Dynamic Updates in the Domain Name
System (DNS UPDATE), April 1997. RFC 2136.

[13] S. Jiang / D. Conrad / B. Carpenter. Moving A6 to Historic Status, March 2012. RFC 6563.

[14] B. Manning / R. Colella. DNS NSAP Resource Records, July 1992. RFC 1348.

[15] B. Manning / R. Colella. DNS NSAP Resource Records, October 1994. RFC 1706.

[16] B. Manning / R. Colella. DNS NSAP Resource Records, June 1994. RFC 1637.

[17] D. Conrad. Indicating Resolver Support of DNSSEC, December 2001. RFC 3225.

1 4 4

https://www.ietf.org/rfc/rfc2931.txt
https://www.ietf.org/rfc/rfc2931.txt
https://www.ietf.org/rfc/rfc3110.txt
https://www.ietf.org/rfc/rfc7043.txt
https://www.ietf.org/rfc/rfc7043.txt
https://www.ietf.org/rfc/rfc7129.txt
https://www.ietf.org/rfc/rfc5864.txt
https://www.ietf.org/rfc/rfc2163.txt
https://www.ietf.org/rfc/rfc2230.txt
https://www.ietf.org/rfc/rfc5001.txt
https://www.ietf.org/rfc/rfc1712.txt
https://www.ietf.org/rfc/rfc7344.txt
https://www.ietf.org/rfc/rfc5155.txt
https://www.ietf.org/rfc/rfc2136.txt
https://www.ietf.org/rfc/rfc6563.txt
https://www.ietf.org/rfc/rfc1348.txt
https://www.ietf.org/rfc/rfc1637.txt
https://www.ietf.org/rfc/rfc3225.txt

[18] M. Mealling / R. Daniel. The Naming Authority Pointer (NAPTR) DNS Resource Record,
September 2000. RFC 2915.

[19] C. Davis / Paul Vixie / T. Goodwin / I. Dickinson. A Means for Expressing Location Infor-
mation in the Domain Name System, January 1996. RFC 1876.

[20] Ed. E. Lewis / A. Hoenes. DNS Zone Transfer Protocol (AXFR), June 2010. RFC 5936.

[21] D. Eastlake. Domain Name System Security Extensions, March 1999. RFC 2535.

[22] D. EastLake. DSA KEYs and SIGs in the Domain Name System (DNS), March 1999. RFC
2536.

[23] D. Eastlake. RSA/MD5 KEYs and SIGs in the Domain Name System (DNS), March 1999.
RFC 2537.

[24] D. Eastlake. Storage of Diffie-Hellman Keys in the Domain Name System (DNS), March 1999.
RFC 2539.

[25] A. Gulbrandsen / Paul Vixie / L. Esibov. A DNS RR for specifying the location of services
(DNS SRV), February 2000. RFC 2782.

[26] J. Schlyter / W. Griffin. Using DNS to Securely Publish Secure Shell (SSH) Key Fingerprints,
January 2006. RFC 4255.

[27] O. Gudmundsson. DNSSEC and IPv6 A6 aware server/resolver message size requirements,
December 2001. RFC 3226.

[28] O. Gudmundsson. Delegation Signer (DS) Resource Record (RR), December 2003. RFC 3658.

[29] M. Stapp / T. Lemon / A. Gustafsson. DNS Resource Record (RR) for Encoding Dynamic
Host Configuration Protocol (DHCP) Information (DHCID RR), October 2006. RFC 4701.

[30] S. Kwan / P. Garg / J. Gilroy / L. Esibov / J. Westhead / R. Hall. Secret Key Transaction
Authentication for DNS (GSS-TSIG), October 2003. RFC 3645.

[31] T. Hansen. US Secure Hash Algorithms, May 2011. RFC 6234.

[32] W. Hardaker. Child-to-Parent Synchronization in DNS, March 2015. RFC 7477.

[33] M. Crawford / C. Huitema. DNS Extensions to Support IPv6 Address Aggregation and Renum-
bering, July 2000. RFC 2874.

[34] J. Jansen. Use of SHA-2 Algorithms with RSA in DNSKEY and RRSIG Resource Records for
DNSSEC, October 2009. RFC 5702.

[35] S. Josefsson. Base-N Encodings, October 2006. RFC 4648.

[36] S. Josefsson. Storing Certificates in the Domain Name System (DNS), March 2006. RFC
4398.

[37] S. Kitterman. Sender Policy Framework (SPF) for Authorizing Use of Domains in Email,
Version 1, April 2014. RFC 7208.

[38] P. Koch. A DNS RR Type for Lists of Address Prefixes (APL RR), June 2001. RFC 3123.

1 4 5

https://www.ietf.org/rfc/rfc2915.txt
https://www.ietf.org/rfc/rfc1876.txt
https://www.ietf.org/rfc/rfc5936.txt
https://www.ietf.org/rfc/rfc2535.txt
https://www.ietf.org/rfc/rfc2536.txt
https://www.ietf.org/rfc/rfc2536.txt
https://www.ietf.org/rfc/rfc2537.txt
https://www.ietf.org/rfc/rfc2539.txt
https://www.ietf.org/rfc/rfc2782.txt
https://www.ietf.org/rfc/rfc4255.txt
https://www.ietf.org/rfc/rfc3226.txt
https://www.ietf.org/rfc/rfc3658.txt
https://www.ietf.org/rfc/rfc4701.txt
https://www.ietf.org/rfc/rfc3645.txt
https://www.ietf.org/rfc/rfc6234.txt
https://www.ietf.org/rfc/rfc7477.txt
https://www.ietf.org/rfc/rfc2874.txt
https://www.ietf.org/rfc/rfc5702.txt
https://www.ietf.org/rfc/rfc4648.txt
https://www.ietf.org/rfc/rfc4398.txt
https://www.ietf.org/rfc/rfc4398.txt
https://www.ietf.org/rfc/rfc7208.txt
https://www.ietf.org/rfc/rfc3123.txt

[39] P. Nikander / J. Laganier. Host Identity Protocol (HIP) Domain Name System (DNS) Exten-
sion, April 2008. RFC 5205.

[40] M. Mealling. Dynamic Delegation Discovery System (DDDS), October 2002. RFC 3403.

[41] R. Daniel / M. Mealling. Resolution of Uniform Resource Identifiers using the Domain Name
System, June 1997. RFC 2168.

[42] Paul Mockapetris. DOMAIN NAMES - CONCEPTS AND FACILITIES, November 1987.
RFC 1034.

[43] Paul Mockapetris. DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION,
November 1987. RFC 1035.

[44] M. Ohta. Incremental Zone Transfer in DNS, August 1996. RFC 1995.

[45] John Postel. USER DATAGRAM PROTOCOL, Augustus 1980. RFC 768.

[46] John Postel. TRANSMISSION CONTROL PROTOCOL, September 1981. RFC 793.

[47] M. Richardson. A Method for Storing IPsec Keying Material in DNS, February 2005. RFC
4025.

[48] R. Arends / R. Austein / M. Larson / D. Massey / S. Rose. DNS Security Introduction and
Requirements, March 2005. RFC 4033.

[49] R. Arends / R. Austein / M. Larson / D. Massey / S. Rose. Resource Records for the DNS
Security Extensions, March 2005. RFC 4034.

[50] RJ Atkinson / SN Bhatti / S. Rose. DNS Resource Records for the Identifier-Locator Network
Protocol (ILNP), November 2012. RFC 6742.

[51] P. Hoffman / J. Schlyter. The DNS-Based Authentication of Named Entities (DANE) Transport
Layer Security (TLS) Protocol: TLSA, August 2012. RFC 6698.

[52] S. Thomson / C. Huitema / V. Ksinant / M. Souissi. DNS Extensions to Support IP Version
6, October 2003. RFC 3596.

[53] C. Everhart / L. Mamakos / R. Ullmann. New DNS RR Definitions, October 1990. RFC
1183.

[54] J. Damas / M. Graff / Paul Vixie. Extension Mechanisms for DNS (EDNS(0)), April 2013.
RFC 6891.

[55] Paul Vixie. Extension Mechanisms for DNS (EDNS0), August 1999. RFC 2671.

[56] M. Andrews / S. Weiler. The DNSSEC Lookaside Validation (DLV) DNS Resource Record,
February 2006. RFC 4431.

[57] S. Weiler. Legacy Resolver Compatibility for Delegation Signer (DS), May 2004. RFC 3755.

[58] B. Wellington. Domain Name System Security (DNSSEC) Signing Authority, November 2000.
RFC 3008.

[59] S. Rose / W. Wijngaards. DNAME Redirection in the DNS, June 2012. RFC 6672.

1 4 6

https://www.ietf.org/rfc/rfc5205.txt
https://www.ietf.org/rfc/rfc3403.txt
https://www.ietf.org/rfc/rfc2168.txt
https://www.ietf.org/rfc/rfc1034.txt
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1995.txt
https://www.ietf.org/rfc/rfc768.txt
https://www.ietf.org/rfc/rfc793.txt
https://www.ietf.org/rfc/rfc4025.txt
https://www.ietf.org/rfc/rfc4025.txt
https://www.ietf.org/rfc/rfc4033.txt
https://www.ietf.org/rfc/rfc4034.txt
https://www.ietf.org/rfc/rfc6742.txt
https://www.ietf.org/rfc/rfc6698.txt
https://www.ietf.org/rfc/rfc3596.txt
https://www.ietf.org/rfc/rfc1183.txt
https://www.ietf.org/rfc/rfc1183.txt
https://www.ietf.org/rfc/rfc6891.txt
https://www.ietf.org/rfc/rfc2671.txt
https://www.ietf.org/rfc/rfc4431.txt
https://www.ietf.org/rfc/rfc3755.txt
https://www.ietf.org/rfc/rfc3008.txt
https://www.ietf.org/rfc/rfc6672.txt

Index

AXFR, 7, 26, 71, 76, 77, 82, 83, 85, 87, 89, 113

command
bin

configure, 14, 28
kill, 25
make, 14, 28
make install, 14, 28
yadifa, 13, 28, 30

sbin
yadifad, 13, 28, 30
yakeyrolld, 13, 41–47

configuration
activate, 102
algorithm, 90, 103
allow-control, 82, 87
allow-notify, 82, 87
allow-query, 82, 87
allow-transfer, 82, 87
allow-update, 82, 87
allow-update-forwarding, 82, 87
also-notify, 88
answer-formerr-packets, 82
auto-notify, 88
axfr-compress-packets, 82
axfr-max-packet-size, 82
axfr-max-record-by-packet, 83
axfr-retry-delay, 83
axfr-retry-failure-delay-max, 83
axfr-retry-failure-delay-multiplier, 83
axfr-retry-jitter, 83
chroot, 83
chroot-path, 83
cpu-count-override, 83
create, 102
daemon, 83
data-path, 83
database, 95
delete, 102
denial, 100

description, 100
dnssec, 95
dnssec-mode, 87
dnssec-policy, 87
do-not-listen, 83
domain, 87
drop-before-load, 87
edns0-max-size, 83
file-name, 88
gid, 83
hidden-master, 83
hostname-chaos, 84
id, 100–104
inactive, 102
iterations, 104
journal-size-kb, 88
key-roll, 101
key-suite, 100
key-template, 101
keys-path, 84, 88
ksk, 103
listen, 84
log-path, 84
log-unprocessable, 84
maintain-dnssec, 88
masters, 88
max-tcp-connections, 84
max-tcp-queries, 84
multimaster-retries, 88
name, 90
no-master-updates, 88
notifies, 88
notify, 88
notify-auto, 88
notify-retry-count, 88
notify-retry-period, 88
notify-retry-period-increase, 88
nsid

ascii, 99
hex, 99

1 4 7

optout, 104
pid-file, 84
port, 84
publish, 102
queries, 95
queries-log-type, 84
retry-count, 88
retry-period, 88
retry-period-increase, 88
rrl

enabled, 99
errors-per-second, 99
exempt-clients, 99
ipv4-prefix-length, 99
ipv6-prefix-length, 99
log-only, 99
max-table-size, 99
min-table-size, 99
responses-per-second, 99
slip, 99
window, 99

rrsig-nsupdate-allowed, 88
salt, 104
salt-length, 104
secret, 90
server, 95
server-port, 84
serverid-chaos, 84
sig-validity-interval, 84, 88
sig-validity-jitter, 84, 89
sig-validity-regeneration, 84, 89
size, 103
statistics, 84
statistics-max-period, 84
stats, 95
system, 95
tcp-query-min-rate, 84
thread-affinity-base, 85
thread-affinity-multiplier, 85
thread-count-by-address, 85
true-multimaster, 89
type, 89
uid, 85
version-chaos, 85
xfr-connect-timeout, 85
xfr-path, 85
zone, 95
zone-download-thread-count, 85

zone-load-thread-count, 85
configuration file

yadifad.conf, 30
yadifad.conf.example, 13
yakeyrolld.conf.example, 13

Denial of Service, 67
Distributed Denial of Service, 67
DNS, 8, 50–53, 65–68, 71, 82, 84, 112, 113
DNS Name Server Identifier Option, 98
DNS Name Server Identifier Option (NSID), 98
DNSSEC, 7, 11, 41–43, 45, 50–53, 56, 57, 62, 68,

69, 75–77, 81, 84, 87, 88, 95
dnssec-policy, 22, 57

EDNS0, 7, 83
encodings

BASE16, 59

firm
EURid, 7, 8

hardware
CPU, 11, 52

IXFR, 7, 26, 71, 73, 74, 77, 82, 85, 87, 113

library
dnscore, 14
dnsdb, 14
dnslg, 14

man
yadifa.8, 13
yadifa.conf.5, 13
yadifa.rc.5, 13
yadifad.8, 13
yadifad.conf.5, 13
yakeyrolld.8, 13
yakeyrolld.conf.5, 13

NSEC3
Opt-Out, 45

rcode
NOTAUTH, 72
SERVFAIL, 72

resource record, 9, 50–52, 59, 65, 107
resource record set, 69
resource record type

1 4 8

A, 52
CNAME, 27
DNSKEY, 27, 42, 45, 51, 52, 54, 55, 69, 70
DS, 27, 51, 52, 55, 104
MX, 52
NS, 9, 27, 52, 88
NSEC, 7, 27, 45, 55, 56, 59, 95, 100, 103
NSEC3, 7, 45, 52, 55–57, 59, 62, 95, 100,

103, 104
NSEC3PARAM, 56, 59
RRSIG, 3, 27, 41, 42, 45, 50, 51, 54–56, 59,

69, 70, 88
SOA, 9, 27, 71, 73, 74, 76, 77

Response Rate Limiting, 67, 68, 99, 112, 114
rfc, 7, 26

1034, 105
1035, 105, 108
1183, 108
1348, 108
1637, 108
1706, 108
1712, 108
1876, 108
2163, 108
2168, 109
2230, 109
2535, 108
2536, 108
2537, 108
2539, 108
2782, 108
2874, 109
2915, 109
2931, 108
3008, 108
3110, 108
3123, 109
3225, 109
3226, 109
3403, 109
3596, 108
3658, 109
3755, 108, 109
4025, 109
4034, 52, 108, 109
4255, 109
4398, 109
4431, 109

4701, 109
5155, 52, 109
5205, 109
5702, 52
5864, 108
6563, 109
6672, 109
6698, 109
6742, 109
6891, 109
7043, 109
7208, 109
7344, 109
7477, 109
dns notify, 72–74, 76, 77, 88
dns update, 26, 32, 38, 69, 75–78
FQDN, 81, 97
KSK, 27, 41, 45, 46, 52–55, 58, 60, 61, 69,

70, 100, 103
NSID, 65
opt-out, 56
rsasha1, 52
rsasha256, 52, 58
rsasha512, 52
SEP, 54, 55
sha1, 52, 59
TCP, 28, 68, 74, 84, 97, 112, 113
TSIG, 23, 28, 72, 97, 137
UDP, 67, 74, 76, 97, 112
ZSK, 41, 42, 45, 52–55, 58, 60, 61, 69, 70,

100, 103

section
acl, 22, 79, 81, 91
channels, 22, 23, 79
denial, 23, 57–60, 80, 100, 101, 104
dnssec-policy, 22, 23, 57–59, 62, 79
key, 22, 23, 79
key-roll, 23, 57, 63, 64, 80, 101
key-suite, 22, 57, 58, 60, 79, 100, 101
key-template, 23, 57, 61, 80, 101
keyword

activate, 63
algorithm, 61
allow-control, 30
create, 63
data-path, 88
delete, 63

1 4 9

denial, 57
dnssec-policy, 57
errors-per-second, 68
generate, 63
id, 57, 58, 60, 63, 64, 100–104
inactive, 63
include, 23
ipv4-prefix-length, 68
ipv6-prefix-length, 68
iterations, 58, 59
ixfr-from-differences, 77
key-roll, 60
key-suite, 57, 58, 62
key-template, 60
master, 89
masters, 71, 78
max-table-size, 68
min-table-size, 68
multimaster-retries, 72
optout, 59
publish, 63
responses-per-second, 68
salt, 58–60, 104
salt-length, 58–60, 104
salt-length’s, 60
section-key-roll, 102
section-key-template, 103
size, 61
slave, 89
slip, 68
true-master, 76, 77
true-multimaster, 73, 78
window, 68
xfr-retry-delay, 74
xfr-retry-failure-delay-max, 74
xfr-retry-failure-delay-multiplier, 74
xfr-retry-jitter, 74

loggers, 22, 23, 79
main, 22, 23, 30, 74, 79, 88, 89
nsid, 22, 23, 79
rrl, 22, 23, 79
zone, 22, 23, 57, 78, 79

software
YADIFA, 84, 87, 88

TLD, 51
tld

.eu, 51

root, 51
TTL, 27, 43, 45

1 5 0

1 5 1

	Introduction
	Domain Name System
	Zones
	Authoritative name servers

	Resource Requirements
	Hardware
	CPU
	Memory

	Supported Operating Systems

	Installation
	Server
	Client
	Libraries
	From Sources
	Configure Options
	Server installation

	From Packages
	RHEL/CentOS/Fedora
	Debian
	Ubuntu
	Arch Linux
	Gentoo
	FreeBSD
	OpenBSD
	Solaris
	Mac OS X

	Server Configuration
	An authoritative name server
	Primary name server
	Secondary name server

	Signals

	Server Technical
	Zone file reader
	Known types

	Client
	YADIFA
	Control commands

	Key roll
	Introduction
	Configuration
	Generate time format
	Command line
	Master name server side setup
	yakeyrolld first sequence
	yakeyrolld runtime usage
	Extend the time covered by the steps

	Domain Name System Security Extensions (DNSSEC)
	Introduction
	DNSSEC overview
	Types of key pairs
	Algorithms

	DNSSEC Policies
	Introduction
	What is needed for DNSSEC?
	Keys for signing
	Signed zone
	Delegated zone

	What is needed for yadifa?
	Zone
	DNSSEC-Policy
	Denial
	Key Suite
	Key Template
	Key-roll

	DNS Name Server Identifier (NSID)
	Introduction
	NSID payload

	DNS Response Rate Limiting (RRL)
	Introduction
	What is it?
	The problem
	A solution

	rfc-rrsig Update Allowed
	Introduction
	The problem
	A solution

	Multi Master
	Introduction
	Design

	What is needed?
	Zone

	Configuration Reference
	Layout
	Types
	Sections
	<main> section
	<zone> sections
	<key> sections
	<acl> section
	<channels> section
	<loggers> section
	<nsid> section
	<rrl> section
	<dnssec-policy> section
	<key-suite> section
	<key-roll> section
	<key-template> section
	<denial> section

	Zones
	MACROS
	@
	$TTL
	$ORIGIN

	Classes
	Resource record types

	Journal
	Statistics
	Configuration Examples
	Introduction
	YADIFA as a primary name server
	The One That is Really Easy
	The One With Activation of Logging
	The One With NSID
	The One With RRL
	The One With DNSSEC Policy 'diary' style
	The One With DNSSEC Policy 'relative' style
	The One With RRSIG Update Allowed
	The One With the Controller

	YADIFA as a secondary name server
	The One With One Master
	The One With Several Masters
	The One With Activation of Logging
	The One With NSID
	The One With RRL

	Troubleshooting
	Submitting a bug report
	Stacktrace
	Using a core dump
	Running yadifad in the debugger

	Building yadifad with even more debugging information

	Bibliography
	Index

